Diabetologie und Stoffwechsel 2011; 6(3): 159-163
DOI: 10.1055/s-0031-1271465
Übersicht

© Georg Thieme Verlag KG Stuttgart ˙ New York

Erfordern neue biochemische Befunde ein Umdenken bei der Therapie des Typ-2-Diabetes?

Stimulierung oder Schonung der β-Zellen?Do New Biochemical Data Require a Change in the View of the Therapy of Type 2 Diabetes?Stimulation or Protection of the β-Cells?H. Fiedler, W. Bruns
Further Information

Publication History

Publication Date:
21 June 2011 (online)

Zusammenfassung

Gesteigerte Insulinsekretion bei Patienten mit Insulinresistenz und Typ-2-Diabetes führt zu endoplasmatischem Retikulum-Stress mit Störungen von Proteostase und Proteinfaltung. Wenn die protektiven Stoffwechselwege der unfolded protein response den endoplasmatischen Retikulum-Stress nicht reduzieren können, kommt es offenbar infolge gesteigerter Apoptose zu Ver­lust von β-Zellen und einer Progression der dia­betischen Krankheit. Therapeutische Strategien sollten die Anforderungen an die β-Zelle beschränken. Die Restriktion langwirkender Sulfonylharnstoffe und eine frühere Insulingabe werden dis­kutiert. 

Abstract

Increased insulin secretion in patients with insulin resistance and type 2 diabetes leads to endoplasmic reticulum stress with disturbances of proteostasis and protein folding. If the protective pathways of the unfolded protein response fail to diminish the ER stress, pancreatic β-cells loss by apoptosis appears to play an important role in the progression of the disease. Therapeutic ­approaches should relieve the demand on the β-cells by restriction of long-acting sulfonylureas but earlier administration of insulin. 

Literatur

  • 1 UK Prospective Diabetes Study (UKPDS) Group . Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).  Lancet. 1998;  352 837-853
  • 2 Bruns W, Fiedler H, Altmann B et al. Insulintherapie bei Typ-2-Diabetes. Pathophysiologisch begründete Therapie mit Insulin unter besonderer Berücksichtigung der Insulinresistenz.. Bruns W, Fiedler H (Hrsg). ­(Pathophysiologisch begründete Therapie mit Insulin unter beson­derer Berücksichtigung der Insulinresistenz und des Inkretineffektes).. 1 Aufl. 2004 2. Aufl. 2010 Bremen, London, Boston: UNI-MED Verlag AG; 2010
  • 3 Bruns W. Zur Therapie des Typ-2-Diabetes nach Offenlegung der ­Ergebnisse der UKPD-Studie. Benötigen wir eine neue Strategie?.  Diab Stoffw. 1999;  8 23-30
  • 4 DeFronzo R A. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus.  Diabetes. 2009;  58 773-779
  • 5 Mertes G. Safety and efficacy of acarbose in the treatment of type 2 diabetes: data from a surveillance study.  Diab Res Clin Prac. 2001;  52 193-204
  • 6 Poulsen M K, Henriksen J E, Hother-Nielsen O, Beck-Nielsen H. The combined effect of tripple therapy with rosiglitazone, metformin, and insulin aspart in type 2 diabetic patients.  Diabetes Care. 2003;  26 3273-3279
  • 7 Matthaei S, Häring H U. Behandlung des Diabetes mellitus Typ 2. In: Praxis-Leitlinien der Deutschen Diabetes-Gesellschaft.  Diabetologie. 2008;  3 S157-S167
  • 8 Fiedler H. Endoplasmatischer Retikulum Stress. Ubiquitin-Proteasom-System. Proteopathien. Proteinfehlfaltungskrankheiten.  MTA Dialog. 2010;  9 766-769
  • 9 Hosoi T, Ozawa K. Endoplasmatic reticulum stress in disease: mechanisms and therapeutic opportunities.  Clin Sci. 2010;  118 19-29
  • 10 Eizirk D L, Cardazo A K, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus.  Endocr Rev. 2008;  29 42-61
  • 11 Scheuner D, Kaufmann R J. The unfolded protein response: A pathway that links insulin demand with β-cell failure and diabetes.  Endocr Rev. 2008;  29 317-333
  • 12 Huang C J, Lin C Y, Hataaja L et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not with type 1 diabetes.  Diabetes. 2007;  56 2016-2027
  • 13 Meier J J, Menge B A, Breuer T GK et al. Functional assessment of pancreatic β-cell area in humans.  Diabetes. 2009;  58 1595-1603
  • 14 Glacca A, Xiao C H, Oprescu I et al. Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies.  Am J Physiol Endocrinol Metab. 2011;  300 E255-E262
  • 15 Oscan U, Cao Q, Yilmaz E et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.  Science. 2004;  306 457-461
  • 16 Hummasti S, Hotamisligil G S. Endoplasmic reticulum stress and inflammation in obesity and diabetes.  Circ Res. 2010;  107 579-591
  • 17 Rajan S, Eames S C, Park S-Y et al. In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes.  Am J Physiol Endocrinol Metab. 2010;  298 E403-E410
  • 18 Hartley T, Brunell J, Volchuk A. Emerging roles for ubiquitin-proteasome system and autophagy in pancreatic β-cells.  Am J Physiol Endocrinol Metab. 2009;  296 E1-E10
  • 19 Oslowski C M, Urano F. The binary switch between life and death of beta cells.  Curr Opin Endocrinol Diabetes Obes. 2010;  17 107-112
  • 20 Zraika S, Hull R L, Verchere C B et al. Toxic oligomers and islet beta cell death: guilty by association or convinced by circumstantial evidence?.  Diabetologia. 2010;  53 1046-1056
  • 21 Grill V, Radtke M, Qvigstad M et al. Beneficial effects of K-ATP channel openers in diabetes: an update on mechanisms and clinical experiences.  Diabetes Obes Metab. 2009;  11 143-148
  • 22 Cunha D A, Ladriere L, Ortis F et al. Glucagon-like peptide-1 protects pancreatic β-cells from lipotoxic endoplasmatic reticulum stress through upregulation of BiP and JunB.  Diabetes. 2009;  58 2851-2862
  • 23 Rachman J, Levy J C, Barrow B A et al. Relative hyperproinsulinemia of NIDDM persists despite the reduction of hyperglycemia with insulin or sulfonylurea therapy.  Diabetes. 1997;  46 1557-1562
  • 24 Jahanshahi P, Wu R, Carter J D et al. Evidence of diminished glucose stimulation and endoplasmic reticulum function in nonoscillatory pancreatic islets.  Endocrinology. 2009;  150 607-615
  • 25 Lingvay l, Legendre J L, Kaloyanova P F et al. Insulin-based versus triple oral therapy for newly diagnosed type 2 diabetes. Which is better?.  Diabetes Care. 2009;  32 1789-1795
  • 26 Standl E, Schnell O. Insulin as a first-line therapy in type 2 diabetes. Should the use of sulfonylurea be halted?.  Diabetes Care. 2008;  31 S136-S139
  • 27 Efanova I B, Zaitzev S V, Zhivotovski B et al. Glucose and tolbutamide ­induce apoptosis in pancreatic beta-cells.  J Biol Chem. 1998;  273 33501-33507
  • 28 Schmidt S, Wilke B, Ziegler B et al. Changes in glucose stimulated insulin secretion after longterm treatment of C57BL mice with glibenclamide.  Endokrinologie. 1980;  76 153-170
  • 29 Aston-Mourney K, Proietto J, Morahan G et al. Too much of a good think: why it is bad to stimulate the beta cell to secrete insulin.  Diabetologia. 2008;  51 540-545
  • 30 Kahn S E, Haffner S M, Heise M A ADOPT Study Group et al. for the. Glycemic durability of rosiglizazone, metformin, or glyburide monotherapy.  N Engl J Med. 2006;  355 2427-2443
  • 31 Rustenbeck I, Baltrusch S, Tiedge M. Do insulinotropic glucose-lowering drugs do more harm than good? The hypersecretion hypothesis revisited.  Diabetologia. 2010;  53 2105-2111
  • 32 Alvarsson M, Sundkvist G, Lager I et al. Beneficial effects of insulin versus sulphonylurea on insulin secretion and metabolic control in recently diagnosed type 2 diabetic patients.  Diabetes Care. 2003;  44 2231-2237
  • 33 Oh C S, Kim S W, Kim Y S et al. The effect of early insulin therapy on pancreatic β-cell function and long-term glycemic control in newly diagnosed type 2 diabetic patients.  Korean J Intern Med. 2010;  3 273-281
  • 34 Xu W, Li Y B, Deng W P et al. Remission of hyperglycemia following intensive insulin therapy in newly diagnosed type 2 diabetic patients: a long-term follow-up study.  Chin Med (Engl) J. 2009;  122 2554-2559
  • 35 Weng J, Li Y, Xu W et al. Effect of intensive therapy on beta-cell function and glycemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial.  Lancet. 2008;  371 1753-1760
  • 36 Gerstein H, Yusuf S, Riddle M C et al. Rationale, design, and baseline characteristics for large international trial of cardiovascular disease prevention in people with dysglycemia: the ORIGIN Trial (outcome and reduction with an initial glargine intervention).  Am Heart J. 2008;  155 26-32
  • 37 Huang Q, Bu S, Yu Y et al. Diazoxide prevents diabetes through inhibiting pancreatic beta-cells from apoptosis via Bcl-2 / Bax rate and p38-beta mitogen-activated protein kinase.  Endocrinology. 2007;  148 81-91
  • 38 Maedler K, Carr R D, Bosco D et al. Sulfonylurea induced β-cell apoptosis in cultured human islets.  J Clin Endocrinol Metab. 2005;  90 501-506
  • 39 Takahashi A, Nagashima K, Hamasaki A et al. Sulfonylurea and glinide reduce insulin content, functional expression of K(ATP) channels, and accelerate apoptotic beta-cell death in the chronic phase.  Diabetes Res Clin Pract. 2007;  77 343-350
  • 40 Alemzadeh R, Langley G, Upchurch L et al. Beneficial effect of diazoxide in obese hyperinsulinemic adults.  J Clin Endocrinol Metab. 1998;  83 1911-1915
  • 41 Eldor R, Stern E, Milicevic Z et al. Early use of insulin in type 2 diabetes.  Diabetes Res Clin Pract. 2005;  68 30-35

Prof. Dr. med. W. Bruns

Smetanastr. 15

13088 Berlin

Phone: 0 30 / 92 40 52 16

Fax: 0 30 / 92 40 52 16

Email: waldemarbruns@web.de

    >