Medicinal Plants from Jordan in the Treatment of Cancer: Traditional Uses vs. In vitro and In Vivo Evaluations – Part 1

Authors
Fatma U. Afifi-Yazar, Violet Kasabri, Rana Abu-Dahab

Affiliation
Faculty of Pharmacy, University of Jordan, Amman, Jordan

Abstract

Plant species have long been used as principal ingredients in traditional medicine. Different surveys showed that ethnomedicinal plant species used by the inhabitants of Jordan for the treatment of cancer are inadequately screened for their therapeutic/chemopreventive potential and phytochemical findings. In this mini review, traditional herbal medicines pursued indigenously with their methods of preparation and active constituents are listed. Studies of random screening for selective cytotoxicity and antiproliferative activity of local spices, domesticated greens, or wild plants are briefly discussed. Recommended future directives for the design and conduct of comprehensive trials are pointed out to validate the usefulness of these active plants or bioactive phytoconstituents either alone or in combination with existing therapies or complementing pharmacologies.

Introduction

The Hashemite Kingdom of Jordan’s habitat is unique in that the intersection of dense forest, arid desert, and tropical geography endows the country with a rich variety of plants and microorganisms that can be studied efficiently in a relatively small land area (Fig. 1) [1]. More than 2500 wild plant species from 700 genera exist; of these, there are approximately 100 endemic species, 250 rare species, and 125 very rare species [1–3]. In the Mediterranean basin, there seems to be a wealth of ethnomedical studies providing a new and key tool for a quest after invaluable phytopharmaceuticals or the development of functional foods or nutraceuticals [4–12]. Traditional medicine practices are part of the Jordanian culture. Despite modern medicine accessibility, herbal medicine has often maintained popularity [13]. The percentage of reliability on herbal medicine varies from rural and desert areas to urban ones [14–16]. Crucially, the folk phytotherapy is “aging” or “vanishing” in the sense that knowledge of medicinal plants persists mainly in elderly rural people with little schooling [17]. In the last decades negative human impacts also affected the ecosystem, adding more plants to the list of endangered species, thus calling on the urgent need for community-based programs promoting their national conservation and sustainability [18].

In a survey carried out with the herbalists in Jordan, none of the interviewed herbalists mentioned any plants for the treatment of cancer [15]. On the other hand, literature surveys based on the published studies indicated that in Jordan and in the neighboring countries, 27 plant species are considered as traditional remedies for the treatment of the different types of cancers [14, 19–23]. This article summarizes information on different aspects of chemopreventive-therapeutic plants as well as randomly screened plants for the antiproliferative activity to stimulate interest in these herbs which are of importance in Jordan and other countries of the semi-arid tropics.

Results and Discussion

Cancer is a leading cause of death worldwide. More than 70% of all cancer deaths occurred in low- and middle-income countries. Deaths from cancer worldwide are projected to continue rising, with an estimated 12 million deaths in 2030 [24]. Running second after heart diseases, cancer is a major cause of morbidity among the Jordanian population, with an estimated incidence rate of
5000 new cases per year. Male to female ratio for cancer cases in Jordan is 0.97:1. The overall median age of cancer diagnosis in Jordan is 56 years (males: 60 years; females: 52 years). 43.15% of all newly registered cases occurred in the age of 60 years and above, and 11.6% occurred below the age of 30 years [25].

As recently updated by the Jordan National Cancer Registry (JNCR) statistics, the most commonly diagnosed cancers in a descending order in 2008 would be breast (18.8%), colon (7.7%), lung (7.7%), bladder (4.3%), and non-Hodgkin’s lymphoma (4.8%) [25,26].

The evidence-based practices of consuming plants and plant derived products in the treatment of cancer with the orthodox therapy were first reported by Afifi et al. [13]. In cooperation with the King Hussein Cancer Centre (KHCC), the researchers interviewed a total of 1138 randomly selected cancer outpatients, predominantly Jordanians. Among interviewees, the total number of complementary and alternative medicine (CAM) users was 404 (35.5%). All CAM users were either on chemotherapy or radiotherapy and preferred to use the crude extract in the form of infusions (n = 296, 73.3%) [13]. Crude extracts were prepared from coarsely powdered plant mixtures and none of the individual plants could be identified by the researchers. Therefore emphasis is given in the present review to the plants with claimed anticancer activities in the ethnopharmacological studies and to the findings of the random screening of the plant species from the local flora for their antiproliferative activities. Table 1 lists the ethnopharmacologically promoted plants with the method of preparation; parts used and reported phytochemical constituents. Clearly, in half of them, experimental studies to prove their cytotoxicity properties, however unique, are negligible. The majority of the plants (78%), nevertheless, were tested for other pharmacological activities (Table 1). In an attempt to screen the medicinal herbs from the Jordanian flora collected from each of the four biogeographic regions of Jordan, more than 120 ethanol, chloroform, and water extracts belonging to about 49 families representing 86 genera were evaluated for their antiproliferative activity.

In an attempt to screen the medicinal herbs from the Jordanian flora collected from each of the four biogeographic regions of Jordan, more than 120 ethanol, chloroform, and water extracts belonging to about 49 families representing 86 genera were evaluated for their antiproliferative activity. *Inula graveolens*, *Salvia dominica*, *Conyza canadiensis* and *Achillea santolina*, *L. viscosa*, *Lavandula officinalis*, and *S. syriaca* showed promising and potent antiproliferative activities on a breast cancer cell line (MCF-7) [27–29]. The most active plant was *I. graveolens* with an IC$_{50}$ of 3.83 µg/mL [27]. Inclusive reporting of the selective cytotoxicity of *Rhus coriaria* and *A. biberstenii* along with the preceding seven species were collectively presented at the 1st Annual World Cancer Congress 2008 Shanghai, China. The ethanol extracts of the active plants were further evaluated using T47D, ZR-75-1, and BT477 cell lines, as were some of their volatile fractions and isolated pure flavonoids [28].

Al-Kalaldeh et al. demonstrated the cytotoxicity activity for the ethanol extracts of *Origanum syriacum* (IC$_{50}$ of 6.4 µg/mL), *Laurus nobilis* (IC$_{50}$ of 24.5 µg/mL), and *S. triloba* (IC$_{50}$ of 25.3 µg/mL) against MCF-7 cell lines [30]. These were among many other commonly used culinary spices or edible domesticated greens proven for their therapeutic properties [31]. In a parallel line of work, Faris et al. illustrated the enhanced chemopreventive effect of cooked lentils against colorectal carcinogenesis [32]. Furthermore, compared to garlic-only treatment, combined supplementation of soy and garlic had a marked modulation of 7,12 dimethylbenz[a]anthracene induced mammary cancer in female albino rats [33]. Additionally, aqueous extracts of *Nigella sativa*, *A. sativum*, and *Onopordum acanthium* augmented significantly splenic natural killers’ cytotoxicity against tumor targets in vitro and in vivo [34–36].

Few more reports on selective evaluation of the traditionally used plants for their cytotoxicity activities were obtainable [23,37,38]. Talib and Mahasneh screened 16 plants for their antiproliferative activity against Hep-2, MCF-7, and Vero cell lines and demonstrated that methanol fractions of *Ononis hirta* and *I. viscosa* exerted their antiproliferative activity by inducing apoptosis in cancer cell lines [23]. In vitro antiproliferative activities of several *Salvia* species against different cancer cell lines were tested by Fiore et al. [37]. Their findings showed promising cytotoxic activity for *S. menthefolia*, *S. spinosa*, *S. sclarea*, and *S. dominica* [37]. In a panel of fibrosarcoma L929SA cells, breast cancer cells MDA-MB231 and MCF-7, organic extracts of *Withania somnifera*, *Psidium guajava*, *L. nobilis*, and *S. fruticosa* also displayed remarkable antitumor cytotoxicity [38]. Withaferin A, a major constituent of *W. somnifera*, was further characterized among a novel class of NF-kB inhibitors, holding promise in cancer treatment [39]. As part of serial studies on the unique and under-explored biodiversity of Jordan, the colchicinoids of *Colchicum ssp.* (*Colchicaceae*) were pursued [40–44]. Alkaloids of the colchicinoid structural class are well known from this genus, particularly (-)-colchicine, and these compounds have been investigated extensively for both toxicological and potential medical properties, exhibiting potent cytotoxicity against a human cancer cell panel [45]. Nevertheless, the pyrrolizidine alkaloids recovered from *Echium glomeratum* (*Boraginaceae*) by the same research group lacked any anticancerous cytotoxicity [46].

Nowadays, it is well accepted that plant constituents possess cancer preventive and cancer-therapeutic activities and natural product chemistry has already contributed to 60% of all anticancer drugs [47–49]. Chemoprevention research has gained momentum through the US FDA approval of tamoxifen and raloxifene for breast cancer risk reduction. Various epidemiological and preclinical findings and the results of several early clinical studies convincingly argue for a definitive role of selected dietary products in the treatment and prevention of cancers. Many of these agents target multiple signal transduction pathways; mod-
### Table 1

Indigenous medicinal plants of Jordan used for the treatment of cancer in folk medicine; major ethnopharmacological surveys, their phytochemical constituents, and latest common pharmacological findings.

<table>
<thead>
<tr>
<th>No.</th>
<th>Family name</th>
<th>Species</th>
<th>Method of preparation of plant parts</th>
<th>Reported ethnopharmacological anticancer activity</th>
<th>Reported phytochemical constituents</th>
<th>Reported selective antiproliferative cytotoxicity or other pharmacologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amaryllidaceae</td>
<td>Narcissus tazetta L.</td>
<td>Infusion of flowers</td>
<td>[23]</td>
<td>Alkaloids [55, 56], flavonoids, and terpenoids [57]</td>
<td>Antiviral [55, 58, 59]; cytotoxic constituents against a panel of cancer cell lines [56, 59], ethanol extract not cytotoxic against MCF-7 [23]; antimicrobial activity [57]</td>
</tr>
<tr>
<td>2</td>
<td>Araceae</td>
<td>Arum dioeciosidis Sibth et Sm.</td>
<td>Decoction of leaves</td>
<td>[19, 21]</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>Araceae</td>
<td>Arum hygrophilum Boiss.</td>
<td>Decoction of leaves</td>
<td>[21]</td>
<td>None</td>
<td>Phytogenic fungicidal activity [60]</td>
</tr>
<tr>
<td>4</td>
<td>Araceae</td>
<td>Arum palatinum Boiss.</td>
<td>Decoction of leaves</td>
<td>[20, 21]</td>
<td>Pyrrole alkaloid [61]</td>
<td>Moderate antioxidant capacity [62]; dose-dependent suppression in the proliferation of breast carcinoma cells (MCF-7) and lymphoblastic leukemia cells (1301) by its ethyl acetate fraction [61]; ethanol extract not cytotoxic against MCF-7 [27]</td>
</tr>
<tr>
<td>5</td>
<td>Araliaceae</td>
<td>Hedera helix L.</td>
<td>Decoction of leaves and berries</td>
<td>[14]</td>
<td>Saponins [63, 64]</td>
<td>Leishmaninic activity [63]; anti-elastase and anti-hyaluronidase activities [65]; antispasmodic [66]; antimutagenic [67]; treatment of bronchial asthma [68]</td>
</tr>
<tr>
<td>6</td>
<td>Asteraceae</td>
<td>Inula viscosa (L.) Ait.</td>
<td>Decoction of flower heads</td>
<td>[23]</td>
<td>Sesquiterpenes, sesquiterpenes acids [69]; azulenes, lactones, flavonoids, and essential oils [70]</td>
<td>Selective antiproliferative activity by inducing apoptosis in MCF-7 cancer cell lines [23]; anti-implantation and mid-term abortifacient effects in rats [71]; cytotoxic and genotoxic effects on A. cepa [72]; hypoglycemic activity in normal and diabetic rats [73]</td>
</tr>
<tr>
<td>8</td>
<td>Asteraceae</td>
<td>anthemis pseudocotula Boiss.</td>
<td>Infusion of flower heads</td>
<td>[14]</td>
<td>Apigenin, apigenin-7-glucoside, scopoletin, and helenium [76]</td>
<td>None</td>
</tr>
<tr>
<td>9</td>
<td>Cucurbitaceae</td>
<td>Luffa cylindrica L.</td>
<td>Boiled seeds and aerial parts</td>
<td>[23]</td>
<td>Triterpenoids and saponins [77, 78]; flavone glycoside [79]</td>
<td>Although ethanol extract was nontoxic against MCF-7 [23], dose-dependent anti-proliferative pro-apoptotic cytotoxicity of alpha-luffin towards tumor cells and its potential antitumor role [83, 84]; fibrinolytic [77]; antiviral, abortifacient, and cytotoxic activities [80, 81]; antioxidant [82] and immunomodulatory effects in Balb/C mice [78]</td>
</tr>
<tr>
<td>11</td>
<td>Euphorbiaceae</td>
<td>Mercurialis annua L.</td>
<td>Decoction of leaves</td>
<td>[20]</td>
<td>Flavonol glycosides [86]</td>
<td>Ethanol extract lacked any antiproliferative efficacy in MCF-7 [27]</td>
</tr>
<tr>
<td>12</td>
<td>Fagaceae</td>
<td>Quercus calliprinos Decne</td>
<td>Decoction of fruits and bark</td>
<td>[20]</td>
<td>Several fatty acids, lipids, and aromatic compounds [87]</td>
<td>High antioxidant capacity [62]; cattle toxicosis [88]</td>
</tr>
<tr>
<td>13</td>
<td>Globulariaceae</td>
<td>Globularia arabica L.</td>
<td>Decoction of leaves</td>
<td>[14]</td>
<td>None</td>
<td>Fetotoxic potentials in female rats [89]; antimicrobial activity [90]; antiviral activity [91]</td>
</tr>
<tr>
<td>14</td>
<td>Lauraceae</td>
<td>Laurus nobilis L.</td>
<td>Decoction of leaves</td>
<td>[20]</td>
<td>Flavonoid O-glycosides, flavonoid C-glycoside, catechin, and cinnamotannin 81 [92]</td>
<td>Antioxidant and acetylcholinesterase inhibition [91]; pro-apoptotic, antiproliferative properties on human melanoma cell lines [94]</td>
</tr>
<tr>
<td>15</td>
<td>Leguminosae</td>
<td>Ononis sicula Desf.</td>
<td>Infusion (topical) of aerial parts</td>
<td>[23]</td>
<td>Flavonoids and terpenoids [23]</td>
<td>Selective antiproliferative activity against MCF-7 cancer cell lines [23]</td>
</tr>
<tr>
<td>16</td>
<td>Leguminosae</td>
<td>Anagyris foetida L.</td>
<td>Decoction of leaves</td>
<td>[14]</td>
<td>Anagyrine, baptifoline, isorhamnetin [95]</td>
<td>Preliminary cytotoxicity against two tumor cell lines [95]; ethanol extract lacked such efficacy in MCF-7 [27]</td>
</tr>
</tbody>
</table>

*continued next page*
ulate cancer aneuploidy, tubulin binding, topoisomerase, and gene specific and aspecific targets, which vary widely depending on cancer origin [12,50,51]. The introduction of synthetic analogues of natural compounds may be a solution for potency and bioavailability limitations [52]. Some natural compounds have exhibited synergism with established chemopreventive agents or with other natural compounds [53]. Since drug associated toxicity remains a significant barrier for currently available chemotherapeutic and chemopreventive drugs, using natural compounds (with better safety profiles) as adjuvant therapy with current chemotherapeutic agents may help to mitigate drug associated toxicities [54]. The key challenge to researchers is how to best use this information for effective cancer prevention in populations with different cancer risks.

In conclusion, these studies, uniquely indicating the potential use of medicinal plants as antineoplastic agents, are among the very few that explored Jordanian flora from extreme environments such as the desert and near the Dead Sea (400 m below sea level) for pharmaceutical leads. Comprehensive research aiming at fully exploiting any of the promising species from the Jordanian flora, either alone or in combination with existing therapies, might lead to the discovery of new avenues for medicinal plants/natural compounds in reducing the public health impact of major cancers. Elucidation of molecular targets and mechanisms also constitutes another prerequisite.

References
3 Al-Eisawi DM. Vegetation of Jordan. Cairo: UNESCO-Regional Office for Science and Technology for the Arab States; 1996: 266

Table 1 Indigenous medicinal plants of Jordan used for the treatment of cancer in folk medicine; major ethnopharmacological surveys, their phytochemical constituents, and latest common pharmacological findings. (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Family name</th>
<th>Species</th>
<th>Method of preparation of plant parts</th>
<th>Reported ethnopharmacological anticancer activity</th>
<th>Reported phytochemical constituents</th>
<th>Reported selective antiproliferative cytotoxicity or other pharmacologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Liliaceae</td>
<td>Urginea maritima (L.) Baker.a,b</td>
<td>Infusion of bulbs</td>
<td>Cardiac glycosides of the bufadienolide type [96,97]</td>
<td>Insecticidal activity [98]; cytotoxic and genotoxic effects in A. cepa test [99]</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Liliaceae</td>
<td>Allium cepa L.a,b</td>
<td>Decoction of raw bulbs and leaves</td>
<td>Flavonoid glycosides [100]; S-alk(en)yl cysteine sulfoxide metabolites [101,102]; quercetin [103]; ononin A [104]</td>
<td>Antimutagenic [100]; antidiabetic [105]; antiplatelet aggregation effect [106]; chemopreventive in gastrointestinal, ovarian, and endometrial and skin cancers [107–110]; induction and augmentation of apoptosis [103,111,112]</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Loranthaceae</td>
<td>Viscum cruciatum Sieb et Boiss.a,b</td>
<td>Decoction of external (pads) and leaves</td>
<td>Diarylheptanoid [113]; triterpenoids and flavonoid aglycones [114]; polyphenols [115]</td>
<td>Antioxidative [115]; cytotoxic against larynx cancer cells [116] with a cytotoxic diarylheptanoid against a panel of cancer cell lines [113]</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Menispermeae</td>
<td>Cocculus pendulus (J. R. &amp; G. Forst.) Diel.a</td>
<td>Infusion of leaves and branches</td>
<td>Several alkaloids [117–119]</td>
<td>Anticholinesterase activity [120,121]</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Poaceae</td>
<td>Triticum aestivum L.a</td>
<td>Decoction of shoots</td>
<td>Lignans, dietary fibers, and aleurone [122,123]</td>
<td>Pro-apoptotic antitumor activity in colon cancer cells [122,123]</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Polypodiaceae</td>
<td>Platanus orientalis L.a,b</td>
<td>Decoction of leaves</td>
<td>Flavonoids and kaempferol glycosides [124,125]</td>
<td>Antimicrobial [124]; cytotoxic against leukemic cell lines [125]</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Ranunculaceae</td>
<td>Clematis flammula L.a,b</td>
<td>Infusion of leaves</td>
<td>Polyphenols [126]</td>
<td>Antioxidative capacity [126]</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Rhamnaceae</td>
<td>Zizyphus spinosus (L.) Desf.a</td>
<td>Decoction of fruits and leaves</td>
<td>Saponin glycosides [129]; flavonoids [130]</td>
<td>Insulinotropic hypoglycemic effects in diabetic rats [131–133]; cytoprotective against liver aflatoxicosis [134] and CCl4-fibrosis [135]; vasoconstrictive effect in rat aorta [136] antiinflam [137]</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Rosaceae</td>
<td>Sarcopoterium spinosum (L.) Spach.a,b</td>
<td>Infusion, decoction of leaves, seeds, and roots</td>
<td>Triterpenoids [138]</td>
<td>Antioxidative [62]; antidiabetic properties [139,140]</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Rosaceae</td>
<td>Crataegus azarolus L.a,b</td>
<td>Decoction of flowers and fruits</td>
<td>Polyphenols [141]</td>
<td>Antioxidative capacity [141]</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Urticaceae</td>
<td>Urtica pilulifera L.a,b</td>
<td>Decoction of leaves</td>
<td>Phenolics [142]</td>
<td>Antioxidative [142]; hypoglycemic activity in diabetic rats [143]</td>
<td></td>
</tr>
</tbody>
</table>

* Plants with ethnotherapeutic claims and traditional uses subjected to critical antitumor cytotoxicity pharmacological appraisal. * Plants with ethnotherapeutic claims and traditional uses subjected to other critical pharmacological appraisals. * Plants with ethnotherapeutic claims and traditional uses not subjected to pharmacological appraisal.
14 Camejo-Rodrigues J, Ascensao L, Bonet MA, Valles J. Ethnobotanical survey in the Pales-
17 Al-Qura’n S. Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan. J Ethnopharmacol 2009; 123: 45–50
18 Talib WH, Mahasneh AM. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Sci Pharm 2010; 78: 33–45
23 Afifi-Yazar FU, Abu-Dahab R, Ismail S. Medicinal plants and anticancer activities: Experiences from Jordan using MCFL cell lines. BJT Life Sciences’ 1st Annual World Cancer Congress, Shanghai; 2008
26 Gupta M. Pharmacological properties and traditional therapeutic uses of important Indian spices: A review. Int J Food Prod 2010; 13: 1092–1116
33 Kaileh M, Vanden Berge W, Heyerick A, Horion J, Piette J, Libert C, De Keukeleire D, Essawi T, Haegeeman G. Withaferin A strongly elicits IKaPPaB kinase beta hyperphosphorylation concomitant with potent inhibi-
34 Alali QF, EL-Elmaint T, Li C, Qandil A, Alkofahi A, Tawaha K, Burgess JP, Na-
35 Alali F, Ma’ayaa’h AS, Alkofahi A, Qandil A, Li C, Burgess JP, Wani MC, Oberlies 
36 Alali E, Tawaha K, EL-Elmaint T, Qassaymeh R, Li C, Burgess JP, Yuka N, Kroll DJ, Wani MC, Oberlies NH. Phytochemical studies and cytotoxicity evaluations of Colchicum tunicatum Feinbr and Colchicum hierosolymita-
37 Alali QF, Gharabeh A, Ghanawneh A, Tawaha K, Oberlies NH. Colchici-
Noneides from Colchicum crocifolium Boiss.: a case study in diterpene strategies for (−)-colchicine and related analogues using LC-MS and LC-PDA techniques. Phytochem Anal 2008; 19: 385–394
38 Al-Mahmoud MS, Alali QF, Tawaha K, Qasaymeh RM. Phytochemical study and cytotoxicity evaluation of Colchicum stevenii Kuntz (Colchic-
41 Rates SMK. Plants as source of drugs. Toxicon 2001; 39: 603–613
42 Dorai T, Aggarwal BB. Role of chemopreventive agents in cancer ther-
45 Amin AR, Kacuk O, Khuri FR, Shin DM. Perspectives for cancer preven-
46 Kasinski AL, Du Y, Thomas SL, Zhao J, Sun SY, Khuri FR, Wang CY, Shoji M, Sun A, Snyder JP, Liotta D, Fu H. Inhibition of IkappaB kinase-nuclear fac-
tor-kappaB signaling pathway by 3,5-bis-2-flurobenzylidene piperi-
done-4-one (EF24), a novel monoketone analog of curcumin. Mol Pharmacol 2004; 78: 654–661
47 Rajabalian S. Methanolic extract of Teucrium polium L. potentiates the cytotoxic and apoptotic effects of anticancer drugs of vincristine, vin-
blastine and doxorubicin against a panel of cancerous cell lines. Exp Oncol 2008; 30: 133–138
49 Papas TS, Sandweil L, Chirigos MA, Farzuwai E. Inhibition of DNA poly-
merase of avian myeloblastosis virus by an alkaloid extract from Nar-
Yoshikawa K, Arihara S, Wang JD, Narui T, Okuyama T.

De Tommasi N, Pizza C, Conti C, Orsi N, Stein ML.

Chemli R, Toumi A, Queslati S, Zouaghi H, Boukef K, Balansard G. Calen-

Zeggwagh NA, Ouahidi ML, Lemhadri A, Eddouks M.

Du Q, Xu Y, Li L, Zhao Y, Jerz G, Winterhalter P. Antioxidant constituents in

the fruits of Luffa cylindrica (L.) Roem. J Agric Food Chem 2006; 54:

4186–4190

Poma A, Marcozzi G, Cesare P, Carmignano M, Spono L. Antiprolifera-

tive effect and apoptotic response in vitro of human melanoma cells to

liposomes containing the ribosome-inactivating protein lufin. Bio-

chim Biophys Acta 1999; 1472: 197–205


mature alpha-lufin from Luffa cylindrica and its antimotor activities in


Iwaso MA, Affl Fi, Amo BI. Studying the anti-tyrosinase effect of Arbus-


Dumkow K. Flavonoids of domestic euphorbiumia. A. Flavonol glyco-

sides of Mercurialis annua L. Z Naturforsch B 1969: 24: 1203

Hanus LO, Temina M, Dembitsky V. Biodiversity of the chemical con-

stituents in the epiphytic lichenized ascomycete Ramalina lacera
grown on difference substrates Crataegus sitchensis. Pinus halepensis, and

Quercus calliprinos. Bioprom Pat 2008; 152: 203–208

Yeruham I, Adivar Y, Perl S, Yakobson B, Silosberg A, Hanji V, Bogin E.

Probable toxicosis in cattle in Israel caused by the oak Quercus calli-


Elbetieha A, Oran SA, Alkofahi A, Darmma H, Raies AM. Fetoietoxic

tentials of Globalaria arabica and Globalaria alpum (Globulariaeae) in


Oran SA, Raies AM. Antimicrobial activity of Globalaria arabica Jacb.


Sultan MM, Zaki AK. Antiviral screening of forty-two Egyptian medicinal


Dall’Aqua S, Cerverelli B, Peroni E, Casta S, Guerra MC, Stella L, Greco E,

Innocenti G. Phytochemical composition and antioxidant activity of


Ferreira A, Proenca C, Serralheiro ML, Araujo ME. The in vitro screening for

acetylteloninesterase inhibition and antioxidant activity of medici-


Punza E, Tersigni M, Iorazz M, Zollo F, De Marino S, Festa C, Napolitano

M, Castello G, Ialenti A, Ianaro A. Lauriside B, a megastigmane glyco-

side from Laurus nobilis (Bay Laurel) leaves, induces apoptosis in hu-

man melanoma cell lines by inhibiting NF-κB activation. J Nutr Prod,

advance online publication 28 December 2010; doi: 10.1021/np100688g

Innocenti G, Dall’Acqua S, Viola G, Loi MC. Cytotoxic constituents from

Anagyris foetida leaves. Fitoterapia 2006; 77: 595–597

Dias C, Borralho Craca JA, Lurdes Goncalves M, Scilla medusalis, TLC

scanning and positive postmortamic effect of bulk extracts. J Ethnophar-

macol 2000; 71: 487–492

Krenn L, Jelovina M, Kopp B. New bufadienolides from Uruguay marinae

sensu strictu. Fitoterapia 2000; 71: 126–121

Cytogenetic effects of Anagyris foetida leaves. Caryologia 2000; 53:

4186–4190

Rose F, Whitman M, Moore PK, Zhu YZ. Bioactive S-alk(en)yl cysteine

sulfide metabolites in the genus Allium: the chemistry of potential


Calluzzi P, Martini C, Balzoni P, Leone S, Bolli A, Pollatini V, Marino M.

Quercitin-induced apoptotic cascade in cancer cells: antioxidant ver-

sus estrogen receptor alpha-dependent mechanisms. Mol Nutr Food Res

2009; 53: 699–708

El-Aasr M, Fujiwara Y, Takeya M, Ikeda T, Tsukamoto S, Ono M, Nakano

D, Okawa M, Kinjo Y, Yoshimizu H, Nohara T. Onnionin A from Allium


Srivivasa K. Plant foods in the management of diabetes mellitus: spizes as beneficial anti diabetic food adjuncts. Int J Food Sci Nutr

2005; 56: 399–414

Ng TB, Wong RN, Yeung HW. Two proteins with ribosome-inactivating,

cytotoxic and abortificient activities from seeds of Luffa cylindrica


Du Q, Xu Y, Li L, Zhao Y, Jerz G, Winterhalter P. Antioxidant constituents in

the fruits of Luffa cylindrica (L.) Roem. J Agric Food Chem 2006; 54:

4186–4190

A new flavone glycoside from the fruits of Luffa cylindrica.

Fitoterapia 2007; 78: 609–610

Ng TB, Chan WY, Yeung HW. Proteins with abortifacient, ribosome inac-

tivating, immunomodulatory, antitumor and anti-AIDS activities from


Allium sativum L. aqueous extract

on insecticidal properties of Luffa cylindrica (Cucurbitaceae) and the rumen inhibitory effect of Luffa cylindrica (Cucurbitaceae) in vitro. J Insect Physiol 1990; 36: 643–648

Mert M, Betul B. Cytogenetic effects of Urginea maritima L. aqueous


Boyle SP, Dobson VL, Duthie SJ, Kyle JA, Collins AR. Absorption and DNA

protective effects of flavonoid glycosides from an onion meal. Eur J Nutr

2000; 39: 213–223

Griffiths G, Truemau L, Cotherwer T, Thomas B, Smith B. Onions—a global


Rose F, Whitman M, Moore PK, Zhu YZ. Bioactive S-alk(en)yl cysteine

sulfide metabolites in the genus Allium: the chemistry of potential


Galluzzo P, Martini C, Balzoni P, Leone S, Bolli A, Pollatini V, Marino M.

Quercitin-induced apoptotic cascade in cancer cells: antioxidant ver-

sus estrogen receptor alpha-dependent mechanisms. Mol Nutr Food Res

2009; 53: 699–708

El-Aasr M, Fujiwara Y, Takeya M, Ikeda T, Tsukamoto S, Ono M, Nakano

D, Okawa M, Kinjo Y, Yoshimizu H, Nohara T. Onnionin A from Allium


Srivivasa K. Plant foods in the management of diabetes mellitus: spizes as beneficial anti diabetic food adjuncts. Int J Food Sci Nutr

2005; 56: 399–414

Afifi-Yazar FU et al. Medicinal Plants from... Planta Med 2011; 77: 1203–1209

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.