Semin Liver Dis 2010; 30(4): 402-410
DOI: 10.1055/s-0030-1267540
© Thieme Medical Publishers

Apoptosis as a Mechanism for Liver Disease Progression

Maria Eugenia Guicciardi1 , Gregory J. Gores1
  • 1Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota
Further Information

Publication History

Publication Date:
19 October 2010 (online)

ABSTRACT

Hepatocyte injury is ubiquitous in clinical practice, and the mode of cell death associated with this injury is often apoptosis, especially by death receptors. Information from experimental systems demonstrates that hepatocyte apoptosis is sufficient to cause liver hepatic fibrogenesis. The mechanisms linking hepatocyte apoptosis to hepatic fibrosis remain incompletely understood, but likely relate to engulfment of apoptotic bodies by professional phagocytic cells and stellate cells, and release of mediators by cells undergoing apoptosis. Inhibition of apoptosis with caspase inhibitors has demonstrated beneficial effects in murine models of hepatic fibrosis. Recent studies implicating Toll-like receptor 9 in liver injury and fibrosis are also of particular interest. Engulfment of apoptotic bodies is one mechanism by which the TLR9 ligand (CpG DNA motifs) could be delivered to this intracellular receptor. These concepts suggest therapy focused on interrupting the cellular mechanisms linking apoptosis to fibrosis would be useful in human liver diseases.

REFERENCES

  • 1 Kim W R, Flamm S L, Di Bisceglie A M, Bodenheimer H C. Public Policy Committee of the American Association for the Study of Liver Disease . Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease.  Hepatology. 2008;  47(4) 1363-1370
  • 2 Rust C, Gores G J. Apoptosis and liver disease.  Am J Med. 2000;  108(7) 567-574
  • 3 Canbay A, Friedman S, Gores G J. Apoptosis: the nexus of liver injury and fibrosis.  Hepatology. 2004;  39(2) 273-278
  • 4 Kerr J F, Wyllie A H, Currie A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.  Br J Cancer. 1972;  26(4) 239-257
  • 5 Grassi A, Susca M, Ferri S et al.. Detection of the M30 neoepitope as a new tool to quantify liver apoptosis: timing and patterns of positivity on frozen and paraffin-embedded sections.  Am J Clin Pathol. 2004;  121(2) 211-219
  • 6 Pop C, Salvesen G S. Human caspases: activation, specificity, and regulation.  J Biol Chem. 2009;  284(33) 21777-21781
  • 7 Oberst A, Pop C, Tremblay A G et al.. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation.  J Biol Chem. 2010;  285(22) 16632-16642
  • 8 Canbay A, Feldstein A, Baskin-Bey E, Bronk S F, Gores G J. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse.  J Pharmacol Exp Ther. 2004;  308(3) 1191-1196
  • 9 Wieckowska A, Zein N N, Yerian L M, Lopez A R, McCullough A J, Feldstein A E. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease.  Hepatology. 2006;  44(1) 27-33
  • 10 Taylor R C, Cullen S P, Martin S J. Apoptosis: controlled demolition at the cellular level.  Nat Rev Mol Cell Biol. 2008;  9(3) 231-241
  • 11 Malhi H, Guicciardi M E, Gores G J. Hepatocyte death: a clear and present danger.  Physiol Rev. 2010;  90(3) 1165-1194
  • 12 Malhi H, Gores G J. Cellular and molecular mechanisms of liver injury.  Gastroenterology. 2008;  134(6) 1641-1654
  • 13 Wei M C, Zong W X, Cheng E H et al.. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death.  Science. 2001;  292(5517) 727-730
  • 14 Youle R J, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death.  Nat Rev Mol Cell Biol. 2008;  9(1) 47-59
  • 15 Du C, Fang M, Li Y, Li L, Wang X. SMAC, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition.  Cell. 2000;  102(1) 33-42
  • 16 Guicciardi M E, Gores G J. Life and death by death receptors.  FASEB J. 2009;  23(6) 1625-1637
  • 17 Faubion W A, Gores G J. Death receptors in liver biology and pathobiology.  Hepatology. 1999;  29(1) 1-4
  • 18 Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors.  Cell. 1998;  94(4) 481-490
  • 19 Li H, Zhu H, Xu C J, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis.  Cell. 1998;  94(4) 491-501
  • 20 Akazawa Y, Gores G J. Death receptor-mediated liver injury.  Semin Liver Dis. 2007;  27(4) 327-338
  • 21 Chisari F V. Cytotoxic T cells and viral hepatitis.  J Clin Invest. 1997;  99(7) 1472-1477
  • 22 Sodeman T, Bronk S F, Roberts P J, Miyoshi H, Gores G J. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas.  Am J Physiol Gastrointest Liver Physiol. 2000;  278(6) G992-G999
  • 23 Faubion W A, Guicciardi M E, Miyoshi H et al.. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas.  J Clin Invest. 1999;  103(1) 137-145
  • 24 Higuchi H, Bronk S F, Taniai M, Canbay A, Gores G J. Cholestasis increases tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-R2/DR5 expression and sensitizes the liver to TRAIL-mediated cytotoxicity.  J Pharmacol Exp Ther. 2002;  303(2) 461-467
  • 25 Natori S, Rust C, Stadheim L M, Srinivasan A, Burgart L J, Gores G J. Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis.  J Hepatol. 2001;  34(2) 248-253
  • 26 Nanji A A, Jokelainen K, Fotouhinia M et al.. Increased severity of alcoholic liver injury in female rats: role of oxidative stress, endotoxin, and chemokines.  Am J Physiol Gastrointest Liver Physiol. 2001;  281(6) G1348-G1356
  • 27 Feldstein A E, Canbay A, Angulo P et al.. Hepatocyte apoptosis and Fas expression are prominent features of human nonalcoholic steatohepatitis.  Gastroenterology. 2003;  125(2) 437-443
  • 28 Barreyro F J, Kobayashi S, Bronk S F, Werneburg N W, Malhi H, Gores G J. Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis.  J Biol Chem. 2007;  282(37) 27141-27154
  • 29 Cazanave S C, Mott J L, Elmi N A et al.. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis.  J Biol Chem. 2009;  284(39) 26591-26602
  • 30 Malhi H, Bronk S F, Werneburg N W, Gores G J. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis.  J Biol Chem. 2006;  281(17) 12093-12101
  • 31 Feldstein A E, Werneburg N W, Li Z, Bronk S F, Gores G J. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization.  Am J Physiol Gastrointest Liver Physiol. 2006;  290(6) G1339-G1346
  • 32 Malhi H, Barreyro F J, Isomoto H, Bronk S F, Gores G J. Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity.  Gut. 2007;  56(8) 1124-1131
  • 33 Meriden Z, Forde K A, Pasha T L et al.. Histologic predictors of fibrosis progression in liver allografts in patients with hepatitis C virus infection.  Clin Gastroenterol Hepatol. 2010;  8(3) 289-296, 296, e1–e8
  • 34 Canbay A, Higuchi H, Bronk S F, Taniai M, Sebo T J, Gores G J. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis.  Gastroenterology. 2002;  123(4) 1323-1330
  • 35 Jaeschke H. Inflammation in response to hepatocellular apoptosis.  Hepatology. 2002;  35(4) 964-966
  • 36 Faouzi S, Burckhardt B E, Hanson J C et al.. Anti-Fas induces hepatic chemokines and promotes inflammation by an NF-kappa B-independent, caspase-3-dependent pathway.  J Biol Chem. 2001;  276(52) 49077-49082
  • 37 Chipuk J E, Moldoveanu T, Llambi F, Parsons M J, Green D R. The BCL-2 family reunion.  Mol Cell. 2010;  37(3) 299-310
  • 38 Cazanave S C, Gores G J. The liver's dance with death: two Bcl-2 guardian proteins from the abyss.  Hepatology. 2009;  50(4) 1009-1013
  • 39 Takehara T, Tatsumi T, Suzuki T et al.. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses.  Gastroenterology. 2004;  127(4) 1189-1197
  • 40 Hikita H, Takehara T, Shimizu S et al.. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver.  Hepatology. 2009;  50(4) 1217-1226
  • 41 Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells.  Cell. 2010;  140(5) 619-630
  • 42 Nagata S. Apoptosis by death factor.  Cell. 1997;  88(3) 355-365
  • 43 Canbay A, Feldstein A E, Higuchi H et al.. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression.  Hepatology. 2003;  38(5) 1188-1198
  • 44 Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores G J. Apoptotic body engulfment by a human stellate cell line is profibrogenic.  Lab Invest. 2003;  83(5) 655-663
  • 45 Jiang J X, Mikami K, Venugopal S, Li Y, Török N J. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways.  J Hepatol. 2009;  51(1) 139-148
  • 46 Elliott M R, Chekeni F B, Trampont P C et al.. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance.  Nature. 2009;  461(7261) 282-286
  • 47 Gregory C. Cell biology: Sent by the scent of death.  Nature. 2009;  461(7261) 181-182
  • 48 Dranoff J A, Ogawa M, Kruglov E A et al.. Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells.  Am J Physiol Gastrointest Liver Physiol. 2004;  287(2) G417-G424
  • 49 Mehal W, Imaeda A. Cell death and fibrogenesis.  Semin Liver Dis. 2010;  30(3) 226-231
  • 50 Bourd-Boittin K, Basset L, Bonnier D, L'helgoualc'h A, Samson M, Théret N. CX3CL1/fractalkine shedding by human hepatic stellate cells: contribution to chronic inflammation in the liver.  J Cell Mol Med. 2009;  13(8A, 8A) 1526-1535
  • 51 Wasmuth H E, Zaldivar M M, Berres M L et al.. The fractalkine receptor CX3CR1 is involved in liver fibrosis due to chronic hepatitis C infection.  J Hepatol. 2008;  48(2) 208-215
  • 52 Hotchkiss R S, Strasser A, McDunn J E, Swanson P E. Cell death.  N Engl J Med. 2009;  361(16) 1570-1583
  • 53 Friedman S L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver.  Physiol Rev. 2008;  88(1) 125-172
  • 54 Kiener P A, Davis P M, Starling G C et al.. Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages.  J Exp Med. 1997;  185(8) 1511-1516
  • 55 Chen J J, Sun Y, Nabel G J. Regulation of the proinflammatory effects of Fas ligand (CD95L).  Science. 1998;  282(5394) 1714-1717
  • 56 Dranoff J A, Wells R G. Portal fibroblasts: Underappreciated mediators of biliary fibrosis.  Hepatology. 2010;  51(4) 1438-1444
  • 57 Friedman S L. Mechanisms of hepatic fibrogenesis.  Gastroenterology. 2008;  134(6) 1655-1669
  • 58 Jiang J X, Mikami K, Shah V H, Torok N J. Leptin induces phagocytosis of apoptotic bodies by hepatic stellate cells via a Rho guanosine triphosphatase-dependent mechanism.  Hepatology. 2008;  48(5) 1497-1505
  • 59 Zhan S S, Jiang J X, Wu J et al.. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo.  Hepatology. 2006;  43(3) 435-443
  • 60 Watanabe A, Hashmi A, Gomes D A et al.. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9.  Hepatology. 2007;  46(5) 1509-1518
  • 61 Imaeda A B, Watanabe A, Sohail M A et al.. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome.  J Clin Invest. 2009;  119(2) 305-314
  • 62 Gäbele E, Mühlbauer M, Dorn C et al.. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis.  Biochem Biophys Res Commun. 2008;  376(2) 271-276
  • 63 Torok N J. Apoptotic cell death takes its toll.  Hepatology. 2007;  46(5) 1323-1325
  • 64 Witek R P, Stone W C, Karaca F G et al.. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis.  Hepatology. 2009;  50(5) 1421-1430
  • 65 Masuoka H C, Guicciardi M E, Gores G J. Caspase inhibitors for the treatment of hepatitis C.  Clin Liver Dis. 2009;  13(3) 467-475
  • 66 Pockros P J, Schiff E R, Shiffman M L et al.. Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C.  Hepatology. 2007;  46(2) 324-329
  • 67 Hoglen N C, Anselmo D M, Katori M et al.. A caspase inhibitor, IDN-6556, ameliorates early hepatic injury in an ex vivo rat model of warm and cold ischemia.  Liver Transpl. 2007;  13(3) 361-366
  • 68 Baskin-Bey E S, Washburn K, Feng S et al.. Clinical Trial of the Pan-Caspase Inhibitor, IDN-6556, in Human Liver Preservation Injury.  Am J Transplant. 2007;  7(1) 218-225
  • 69 Ekert P G, Read S H, Silke J et al.. Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die.  J Cell Biol. 2004;  165(6) 835-842
  • 70 Tait S W, Parsons M J, Llambi F et al.. Resistance to caspase-independent cell death requires persistence of intact mitochondria.  Dev Cell. 2010;  18(5) 802-813
  • 71 Green D R, Evan G I. A matter of life and death.  Cancer Cell. 2002;  1(1) 19-30
  • 72 Kaufmann T, Jost P J, Pellegrini M et al.. Fatal hepatitis mediated by tumor necrosis factor TNFalpha requires caspase-8 and involves the BH3-only proteins Bid and Bim.  Immunity. 2009;  30(1) 56-66
  • 73 Zender L, Hutker S, Liedtke C et al.. Caspase 8 small interfering RNA prevents acute liver failure in mice.  Proc Natl Acad Sci U S A. 2003;  100(13) 7797-7802
  • 74 Yoon J H, Gores G J. Death receptor-mediated apoptosis and the liver.  J Hepatol. 2002;  37(3) 400-410
  • 75 Lenert P S. Classification, mechanisms of action, and therapeutic applications of inhibitory oligonucleotides for Toll-like receptors (TLR) 7 and 9.  Mediators Inflamm. 2010;  2010 986596
  • 76 Santiago-Raber M L, Baudino L, Izui S. Emerging roles of TLR7 and TLR9 in murine SLE.  J Autoimmun. 2009;  33(3-4) 231-238
  • 77 Fiore G, Piazzolla G, Galetta V, Caccetta L, Schiraldi O, Antonaci S. Liver tissue expression of CD80 and CD95 antigens in chronic hepatitis C: relationship with biological and histological disease activities.  Microbios. 1999;  97(386) 29-38
  • 78 Tagashira M, Yamamoto K, Fujio K et al.. Expression of perforin and Fas ligand mRNA in the liver of viral hepatitis.  J Clin Immunol. 2000;  20(5) 347-353
  • 79 Ibuki N, Yamamoto K, Yabushita K et al.. In situ expression of granzyme B and Fas-ligand in the liver of viral hepatitis.  Liver. 2002;  22(3) 198-204
  • 80 Ehrmann Jr J, Galuszková D, Ehrmann J et al.. Apoptosis-related proteins, BCL-2, BAX, FAS, FAS-L and PCNA in liver biopsies of patients with chronic hepatitis B virus infection.  Pathol Oncol Res. 2000;  6(2) 130-135
  • 81 Pianko S, Patella S, Ostapowicz G, Desmond P, Sievert W. Fas-mediated hepatocyte apoptosis is increased by hepatitis C virus infection and alcohol consumption, and may be associated with hepatic fibrosis: mechanisms of liver cell injury in chronic hepatitis C virus infection.  J Viral Hepat. 2001;  8(6) 406-413
  • 82 Tang T J, Kwekkeboom J, Laman J D et al.. The role of intrahepatic immune effector cells in inflammatory liver injury and viral control during chronic hepatitis B infection.  J Viral Hepat. 2003;  10(3) 159-167
  • 83 Rivero M, Crespo J, Fábrega E et al.. Apoptosis mediated by the Fas system in the fulminant hepatitis by hepatitis B virus.  J Viral Hepat. 2002;  9(2) 107-113
  • 84 Tagami A, Ohnishi H, Hughes R D. Increased serum soluble Fas in patients with acute liver failure due to paracetamol overdose.  Hepatogastroenterology. 2003;  50(51) 742-745
  • 85 Ryo K, Kamogawa Y, Ikeda I et al.. Significance of Fas antigen-mediated apoptosis in human fulminant hepatic failure.  Am J Gastroenterol. 2000;  95(8) 2047-2055
  • 86 Tagami A, Ohnishi H, Moriwaki H, Phillips M, Hughes R D. Fas-mediated apoptosis in acute alcoholic hepatitis.  Hepatogastroenterology. 2003;  50(50) 443-448
  • 87 Ribeiro P S, Cortez-Pinto H, Solá S et al.. Hepatocyte apoptosis, expression of death receptors, and activation of NF-kappaB in the liver of nonalcoholic and alcoholic steatohepatitis patients.  Am J Gastroenterol. 2004;  99(9) 1708-1717
  • 88 Fox C K, Furtwaengler A, Nepomuceno R R, Martinez O M, Krams S M. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis.  Liver. 2001;  21(4) 272-279
  • 89 Tinmouth J, Lee M, Wanless I R, Tsui F W, Inman R, Heathcote E J. Apoptosis of biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis.  Liver. 2002;  22(3) 228-234
  • 90 Strand S, Hofmann W J, Grambihler A et al.. Hepatic failure and liver cell damage in acute Wilson's disease involve CD95 (APO-1/Fas) mediated apoptosis.  Nat Med. 1998;  4(5) 588-593
  • 91 Tannapfel A, Kohlhaw K, Ebelt J et al.. Apoptosis and the expression of Fas and Fas ligand (FasL) antigen in rejection and reinfection in liver allograft specimens.  Transplantation. 1999;  67(7) 1079-1083
  • 92 Strand S, Hofmann W J, Hug H et al.. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion?.  Nat Med. 1996;  2(12) 1361-1366
  • 93 Nagao M, Nakajima Y, Hisanaga M et al.. The alteration of Fas receptor and ligand system in hepatocellular carcinomas: how do hepatoma cells escape from the host immune surveillance in vivo?.  Hepatology. 1999;  30(2) 413-421
  • 94 Ito Y, Monden M, Takeda T et al.. The status of Fas and Fas ligand expression can predict recurrence of hepatocellular carcinoma.  Br J Cancer. 2000;  82(6) 1211-1217
  • 95 Ito Y, Takeda T, Umeshita K et al.. Fas antigen expression in hepatocellular carcinoma tissues.  Oncol Rep. 1998;  5(1) 41-44
  • 96 Lee S H, Shin M S, Lee H S et al.. Expression of Fas and Fas-related molecules in human hepatocellular carcinoma.  Hum Pathol. 2001;  32(3) 250-256
  • 97 Okano H, Shiraki K, Inoue H et al.. Cellular FLICE/caspase-8-inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma.  Lab Invest. 2003;  83(7) 1033-1043
  • 98 Miura K, Kodama Y, Inokuchi S et al.. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice.  Gastroenterology. 2010;  139(1) 323-334, e7

Gregory J GoresM.D. 

Reuben R. Eisenberg Professor of Medicine and Chair, Division of Gastroenterology and Hepatology

College of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905

Email: gores.gregory@mayo.edu

    >