Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2011; 21(1): 45-51
DOI: 10.1055/s-0030-1265146
Science and Research

© Georg Thieme Verlag KG Stuttgart · New York

Influence of Direct Current on the Cartilaginous Metabolism in vivo

Einfluss von elektrischem Gleichstrom auf den Knorpelmetabolismus in vivoM. I. Korpan1 , I. S. Chekman2 , S. Magomedov3 , O. A. Burjanov4 , V. Fialka-Moser1
  • 1Department of Physical Medicine and Rehabilitation, Medical University Vienna, General Hospital Vienna, Austria
  • 2Department of Pharmacology and Toxicology, National Medical University Kyiv, Ukraine
  • 3Department of Traumatology and Orthopaedics, Postgraduate University Hospital, Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
  • 4Department of Traumatology and Orthopaedics, National Medical University Kyiv, Ukraine
Further Information

Publication History

received: 25.03.2010

accepted: 01.09.2010

Publication Date:
22 February 2011 (online)

Abstract

Purpose: To evaluate the effects of direct current (DC) on the cartilaginous metabolism in an experimental osteoarthritis (OA) animal model.

Materials and Methods: In a randomized, controlled trial, 45 animals were divided into 5 equal groups, each consisting of 9 rabbits. The 1st group was the intact control group and the 2nd group was the OA control group. The rabbits’ injured knee joints were treated with DC of different intensities: 0.01 mA/cm2 (group 3), 0.1 mA/cm2 (group 4), and 0.2 mA/cm2 (group 5). The content of collagen in the cartilage, the collagenase enzyme activity in the blood and the content of glycosaminoglycans (GAGs) in the cartilage tissue and in the blood were evaluated.

Results: An increase of collagen in the cartilage after exposure to a DC intensity of 0.2  mA/cm2 to 6.0±0.5 μg/g (group 5) was found, compared to 4.2±0.3 μg/g (OA control). Collagenase enzyme activity in the blood decreased to 5.1±0.4 μmol/l·h (group 5) in comparison with the OA control (6.8±0.4 μmol/l·h). The GAG content in the cartilage amounted to 8.7±0.7 μg/mg and to 6.4±0.4 μg/mg in group 5 and OA control, accordingly. The GAG content in the blood decreased from 0.066±0.005 g/l (OA control) to 0.051±0.004 g/l under DC influence of 0.2 mA/cm2 (group 5).

Conclusions: DC (0.2 mA/cm2) locally stimulates the metabolic process in the cartilaginous tissue and systemically in the blood after OA in vivo, indicating the therapeutic mechanism of DC.

Zusammenfassung

Fragestellung: Bewertung des Einflusses von elektrischem Gleichstrom auf den Knorpelmetabolismus bei einem Tierexperimentellenmodell für Osteoarthrose.

Methode: Bei einer randomisierten, kontrollierten Studie wurden 45 Tiere in 5 gleiche Gruppen aufgeteilt, wobei jede Gruppe aus 9 Kaninchen bestand. Bei der 1. Gruppe handelte es sich um die intakte Kontrollgruppe und bei der 2. Gruppe um die OA-Kontrollgruppe. Die operativ traumatisierten Kniegelenke der Kaninchen wurden mit Gleichstrom unterschiedlicher Intensitäten behandelt: 0,01 mA/cm2 (Gruppe 3), 0,1 mA/cm2 (Gruppe 4) und 0,2 mA/cm2 (Gruppe 5). Der Inhalt an Kollagen im Knorpel, die Kollagenase-Enzym-Aktivität im Blut und der Inhalt von Glykosaminoglykanen (GAG) sowohl im Knorpelgewebe als auch im Blut wurden untersucht.

Ergebnisse: Nach einer Gleichstrombehandlung von 0,2 mA/cm2 wurde ein Anstieg an Kollagen im Knorpel bis 6,0±0,5 μg/g (Gruppe 5) im Vergleich zu 4,2±0,3 μg/g (OA-Kontrollgruppe) festgestellt. Die Kollagenase-Enzym-Aktivität im Blut sank auf 5,1±0,4 μmol/l·h (Gruppe 5) im Vergleich zu der OA-Kontrollgruppe (6,8±0,4 μmol/l·h). Der GAG-Inhalt im Knorpel belief sich auf 8,7±0,7 μg/mg und auf 6,4±0,4 μg/mg entsprechend bei Gruppe 5 und OA-Kontrollgruppe. Der GAG-Inhalt im Blut sank von 0,066±0,005 g/l (OA-Kontrollgruppe) auf 0,051±0,004 g/l unter Einfluss von Gleichstrom von 0,2 mA/cm2 (Gruppe 5).

Schlussfolgerung: Gleichstrom mit Intensität von 0,2 mA/cm2 stimuliert lokal den Stoffwechselprozess im Knorpelgewebe und führt zu systemischen Veränderungen im Blut nach OA in vivo. Dies deutet auf den therapeutischen Mechanismus von Gleichstrom hin.

References

  • 1 Kroeling P, Gross AR, Goldsmith CH. A Cochrane review of electrotherapy for mechanical neck disorders.  Spine. 2005;  30 641-648
  • 2 Hulme J, Robinson V, DeBie R et al. Electromagnetic fields for the treatment of osteoarthritis.  Cochrane Database Syst Rev. 2002;  CD003523
  • 3 Brosseau LU, Pelland LU, Casimiro LY et al. Electrical stimulation for the treatment of rheumatoid arthritis.  Cochrane Database Syst Rev. 2002;  CD003687
  • 4 Cameron MH. Fighting inflammation.  Rehab Manag. 2005;  18 26-28
  • 5 Snyder MJ, Wilensky JA, Fortin JD. Current Applications of Electrotherapeutics in Collagen Healing.  Pain Physician. 2002;  5 172-181
  • 6 Gabriel SE, Crowson CS, Fallon WM. Cost of osteoarthritis: estimate from a geographically defined population.  J Rheumatol. 1995;  22 23-25
  • 7 March LM, Bachmeier CJ. Economics of osteoarthritis: a global perspective.  Baillieres Clin Rheumatol. 1997;  4 817-834
  • 8 Korz MO, Deduch NV, Zupanez IA. Osteoarthritis. Conservative therapy.. Charkov: Flag; 1999: 336
  • 9 Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis.  Instr Course Lect. 2005;  54 465-480
  • 10 Wolfe F, Lane NE. The long-term outcome of osteoarthritis: rates and predictors of joint space narrowing in symptomatic patients with knee osteoarthritis.  J Rheumatol. 2002;  29 139-146
  • 11 Englund M, Lohmander LS. Risk factors for symptomatic knee osteoarthritis fifteen to twenty-two years after meniscectomy.  Arthritis Rheum. 2004;  51 941-946
  • 12 Towheed T, Judd M, Hochberg H et al. Acetaminophen for osteoarthritis.. Chichester: John Wiley; 2004: 7-9
  • 13 Stitik TP, Altschuler E, Foye PM. Pharmacotherapy of osteoarthritis.  Am J Phys Med Rehabil. 2006;  85 15-28
  • 14 Sisto SA, Malanga G. Osteoarthritis and therapeutic exercise.  Am J Phys Med Rehabil. 2006;  85 69-78
  • 15 Hamid S, Hayek R. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview.  Eur Spine J. 2008;  17 1256-1269
  • 16 Ramadan A, Elsaidy M, Zyada R et al. Effect of low-intensity direct current on the healing of chronic wounds: a literature review.  J Wound Care. 2008;  17 292-296
  • 17 Talebi G, Torkaman G, Fiorozzabadi M et al. Effect of anodal and cathodal microamperage direct current electrical stimulation on injury potential and wound size in guinea pigs.  J Rehab Res Dev. 2008;  45 153-159
  • 18 MacGinitie LA, Gluzband YA, Grodzinsky AJ. Electric field stimulation can increase protein synthesis in articular cartilage explants.  J Orthop Res. 1994;  12 151-160
  • 19 Genbun Y. The effects of electrical stimulation on epiphyseal cartilage.  Nippon Ika Daigaku Zasshi. 1991;  58 21-28
  • 20 Takei N, Akai M. Effect of direct current stimulation on triradiate physeal cartilage. In vivo study in young rabbits.  Arch Orthop Trauma Surg. 1993;  112 159-162
  • 21 Goldring MB. The role of the chondrocyte in osteoarthritis.  Arthritis Rheum. 2000;  43 1916-1926
  • 22 Bluteau G, Conrozier T, Mathieu P et al. Matrix metalloproteinase-1, -3, -13 and aggrecanase-1 and -2 are differentially expressed in experimental osteoarthritis.  Biochim Biophys Acta. 2001;  1526 147-158
  • 23 Cibere J, Thorne A, Kopec JA et al. Glucosamine sulphate and cartilage type II collagen degradation in patients with knee osteoarthritis: randomized discontinuation trial results employing biomarkers.  J Rheumatol. 2005;  32 896-902
  • 24 Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation.  The FASEB J. 2006;  20 9-22
  • 25 Matsuhashi T, Iwasaki N, Nakagawa H et al. Alteration of N-glycans related to articular cartilage deterioration after anterior cruciate ligament transaction in rabbits.  Osteoarthritis and Cartilage. 2008;  16 772-778
  • 26 Kapila S, Wang W, Uston K. Matrix metalloproteinase induction by relaxin causes cartilage matrix degradation in target synovial joints.  Ann N Y Acad Sci. 2009;  1160 322-328
  • 27 Nehrer S, Minas T. Treatment of Articular Cartilage Defects.  Invest Radiol. 2000;  35 639-646
  • 28 Cook SD, Patron LP, Salkeld SL et al. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs.  J Bone Joint Surg Am. 2003;  85 116-123
  • 29 Milentijevic D, Rubel I, Liew AS et al. An in vivo rabbit model for cartilage trauma: a preliminary study of the influence of impact stress magnitude on chondrocyte death and matrix damage.  J Orthop Trauma. 2005;  19 466-473
  • 30 Krel AA, Furzeva LH. Methods of the finding of collagen in biological tissues and its use in clinical practice.  Vopr Med Chim. 1968;  14 635-640
  • 31 Lindy S, Halme J. Collagenolytic activity in rheumatoid synovial tissue.  Clin Chim Acta. 1973;  47 153-157
  • 32 Bartold PM, Page RC. A microdetermination method for assaying glycosaminoglycans and proteoglycans.  Anal Biochem. 1985;  150 320-324
  • 33 Kljatskin SA, Lifschtic RI. Method of determination of glycosoaminglykanov in the blood of patients.  Lab Delo. 1989;  10 51-53
  • 34 Dunnet CW. New tables for multiple comparisons with a control.  Biometrics. 1964;  20 482-491
  • 35 Lapach SG, Chubenko AV, Babich PN. Statistics in science and business.. Kiev: Morion; 2002: 640
  • 36 Martin JA, Brown T, Heiner A et al. Post-traumatic osteoarthritis: The role of accelerated chondrocyte senescence.  Biorheology. 2004;  41 479-491
  • 37 Raman R, Sasisekharan V, Sasisekharan R. Structural insights into biological roles of protein-glycosaminoglycan interactions.  Chem Biol. 2005;  12 267-277
  • 38 Lee PH, Trwobridge JM, Taylor KR et al. Dermatan sulfulte proteoglycan and glycosaminoglycan synthesis is induced in fibroblasts by transfer to a three-dimensional extracellular environment.  J Biol Chem. 2004;  279 48640-48646
  • 39 Huser CA, Davies ME. Validation of an in vitro single-impact load model of the initiation of osteoarthritis-like changes in articular cartilage.  J Orthop Res. 2005;  24 725-732
  • 40 Kempson GE. The mechanical properties of articular cartilage. In: Sokoloff L, editor The joints and synovial fluid. 1980 2: 177-238
  • 41 Young AA, Stanwell P, Williams A et al. Glycosaminoglycan Content of Knee Cartilage Following Posterior Cruciate Ligament Rupture Demonstrated by Delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage.  J Bone Joint Surg. 2005;  87 2763-2767
  • 42 Bailey AJ, Mansell JP. Do subchondral bone changes exacerbate or precede articular cartilage destruction in osteoarthritis of the elderly?.  Gerontology. 1997;  43 296-304
  • 43 Ronca F, Pamieri L. Anti-inflammatory activity of chondroitin sulfate.  Osteoarthritis Cartilage Res. 1998;  6 14-21
  • 44 Slowman SD, Brandt K. Composition and glycosaminoglycan metabolism of articular cartilage from habitually loaded and habitually unloaded sites.  Arthr Rheum. 1986;  29 88-94
  • 45 Cook S, Salkeld SL, Popich-Patron LS et al. Improved cartilage repair after treatment with low-intensity pulsed ultrasound.  Clinical Orthopaedics and Related Research. 2001;  391 231-243
  • 46 Watson PJ, Hall LD, Malcolm A. Degenerative joint disease in the guinea pig. Use of magnetic resonance imaging to monitor progression of bone pathology.  Arthritis Rheum. 1996;  39 1327-1337
  • 47 Appleyard RC, Burkhardt D, Ghosh P et al. Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis.  Osteoarthritis Cartilage. 2003;  11 65-77
  • 48 Baker B, Becker RO, Spadaro J. A study of electrochemical enhancement of articular cartilage repair.  Clin Orthop. 1974;  102 251-257
  • 49 Lippiello L, Chakkalakal D, Connolly J. Pulsing direct current-induced repair of articular cartilage in rabbit osteochondral defects.  J Orthop Res. 1990;  8 266-275
  • 50 Cook SD, Patron LP, Christakis PM et al. Direct current stimulation of titanium interbody fusion devices in primates.  Spine J. 2004;  4 300-311
  • 51 Brighton CT, Black J, Friedenberg ZB. Multicentre study of treatment of non-union with constant direct current.  J Bone Joint Surg. 1981;  63A 2-13
  • 52 Paterson DC. Treatment of nonunion with a constant direct current: A totally implantable system.  Orthop Clin North Am. 1984;  15 47-59
  • 53 Steiner M, Ramp WK. Electrical stimulation of bone and its implications for endosseous implantation.  J Oral Implant. 1990;  16 20-27
  • 54 France JC, Norman TL, Santrock RD et al. The efficacy of direct current stimulation for lumbar intertransverse process fusion in an animal model.  Spine. 2001;  26 1002-1008
  • 55 Hagiwara T, Bell WH. Effect of electrical stimulation on mandibular distraction osteogenenesis.  J Craniomaxillofac Surg. 2000;  28 12-19
  • 56 Nessler J, Mass D. Direct current electrical stimulation of tendon healing in vitro.  Clin Orthop Rel Res. 1987;  217 303-311
  • 57 Aaron RK, Ciombur DM. Therapeutic potential of electric fields in skeletal morphogenesis.. In: Buckwalter JA, Ehrlich MG, Sandell LJ, Trippel SB, editors. Skeletal growth and development. Clinical issues and basic advances Rosement, IL: J Am Acad Orthop Surg; 1998: 589-610
  • 58 Gault WR, Gatens PF. Use of low intensity direct current in management of ischaemic skin ulcers.  Phys Ther. 1976;  56 265-268
  • 59 Carley PJ, Wainapel SF. Electrotherapy for acceleration of wound healing: low intensity direct current.  Arch Phys Med Rehabil. 1985;  66 443-446
  • 60 Brown M, McDonnell MK, Menton DN. Electrical stimulation effects on cutaneous wound healing in rabbits. A follow-up study.  Phys Ther. 1988;  68 955-960
  • 61 Kloth LC. Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials.  Int J Low Extrem Wounds. 2005;  4 23-44
  • 62 Feedar JA, Kloth LC, Gentzkow GD. Chronic dermal ulcer healing enhanced with monophasic pulsed electrical stimulation.  Phys Ther. 1991;  71 639-649
  • 63 Weiss DS, Kirsner R, Eaglstein WH. Electrical stimulation and wound healing.  Arch Dermatol. 1990;  126 222-225
  • 64 Alvarez OM, Pertz PM, Smerbock RV et al. The healing of superficial skin wounds is stimulated by external electrical current.  J Invest Dermatol. 1983;  81 144-148
  • 65 Erickson CA, Nuccitelli R. Embryonic fibroblast motility and orientation can be influenced by physiological electrical fields.  J Cell Biol. 1984;  98 296-307
  • 66 Osiri M, Welch V, Brosseau L et al. Transcutaneous electrical nerve stimulation for knee osteoarthritis.  Cochrane Database Syst Rev. 2000;  CD002823
  • 67 Gan JC, Glazer PA. Electrical stimulation therapies for spinals fusions: current concepts.  Eur Spine J. 2006;  15 1301-1311
  • 68 Lippiello L, Chakkalakal D, Connolly J. Pulsing direct current-induced repair of articular cartilage in rabbit osteochondral defects.  J Orthop Res. 1990;  8 266-275
  • 69 Brighton CT, Unger AS, Stambough JL. In vitro growth of bovine articular cartilage chondrocytes in various capacitively coupled electric fields.  J Orthop Res. 1984;  2 15-22
  • 70 Campbell CJ. The healing of cartilage defects.  Clin Orthop. 1969;  64 45-63
  • 71 Ho KH, Diaz SH, Protsenko DE et al. Electromechanical reshaping of septal cartilage.  Laryngoscope. 2003;  113 1916-1921
  • 72 Takei N, Akai M. Effect of direct current stimulation on triradiate physeal cartilage. In vivo study in young rabbits.  Arch Orthop Traum Surg. 1993;  112 159-162
  • 73 Akai M, Shirasaki Y, Tateishi T. Electrical stimulation of joint contracture: an experiment in rat model with direct current.  Arch Phys Med Rehabil. 1997;  78 405-409
  • 74 Okihana H, Shimomura Y. Effect of direct current on cultured growth cartilage cells in vitro.  J Orthop Res. 1988;  6 690-694
  • 75 Bozic KJ, Glazer PA, Zurakowski D et al. In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion.  Spine. 1999;  24 2127-2133
  • 76 Aaron RK, Ciombur DM. Therapeutic potential of electric fields in skeletal morphogenesis.. In: Buckwalter JA, Ehrlich MG, Sandell LJ, Trippel SB, editors. Skeletal growth and development. Clinical issues and basic advances Rosement, IL: J Am Acad Orthop Surg; 1998: 589-610
  • 77 Aaron RK, Boyan BD, Ciombor DM et al. Stimulation of growth factor synthesis by electric and electromagnetic fields.  Clin Orthop. 2004;  419 30-37

Correspondence

Ass. Prof. Dr. M. I. Korpan

Department of Physical

Medicine and Rehabilitation

General Hospital Vienna

Waehringer Guertel 18–20

1090 Vienna

Austria

Email: marta.korpan@meduniwien.ac.at

    >