Diabetologie und Stoffwechsel 2011; 6(1): 32-42
DOI: 10.1055/s-0030-1262761
Übersicht

© Georg Thieme Verlag KG Stuttgart ˙ New York

Konsequenzen eines Wechsels von Glukose- zu HbA1c-basierten Kriterien für die Diabetesdiagnose: Ein narratives Review aus epidemiologischer Sicht

Consequences of a Change from Glucose to HbA1c-Based Criteria for the Diagnosis of Type 2 Diabetes: A Narrative Review from an Epidemiological ViewB. Kowall1 , W. Rathmann1
  • 1Deutsches Diabetes Zentrum an der Heinrich-Heine Universität
Further Information

Publication History

Publication Date:
11 February 2011 (online)

Zusammenfassung

Die American Diabetes Association (ADA) empfiehlt einen HbA1c-Wert ≥ 6,5 % als alternatives Kriterium für die Diagnose des Typ-2-Diabetes (T2DM), das International Expert Committee aus Experten von ADA, EASD und IDF sieht den HbA1c sogar als glukosebasierten Kriterien überlegen an. Eine Auswertung bisher vorliegender epidemiologischer Studien zeigt, dass ein Wechsel von glukose- zu HbA1c-basierten Kriterien gravierende Folgen hätte – beispielsweise für die Diabetesprävalenz in der Bevölkerung. In den meisten Studien sinkt die Prävalenz des T2DM – teilweise deutlich – ab, wenn die Diabetesdiagnose auf dem Kriterium HbA1c ≥ 6,5 % und nicht mehr auf dem oralen Glukosetoleranztest (OGTT) beruht. Die Sensitivität des HbA1c für Diabetesfälle, die nach glukosebasierten Kriterien diagnostiziert wurden, schwankt in den bisherigen Studien zwischen 17 und 78 %, der positive prädiktive Wert zwischen 15 und 98 %: Beides zeigt eine teilweise sehr geringe Überlappung der nach Glukose- beziehungsweise HbA1c-Kriterien definierten Diabetespopulationen an. Auch die Prävalenz des Prädiabetes variiert je nach gewähltem Kriterium (WHO 1999, ADA 2003, HbA1c 5,7–6,4 %, HbA1c 6,0–6,4 %) erheblich, die Überlappung der nach unterschiedlichen Kriterien als prädiabetisch identifizierten Populationen ist in der Regel gering. Personen, die nur per OGTT eine Diabetesdiagnose erhalten haben, haben nach ersten Analysen ein etwas ungünstigeres metabolisches Profil als Personen, die nur anhand des HbA1c diagnostiziert wurden. Es fehlen Langzeitstudien, die zeigen, ob Probanden, die nach den Glukose- beziehungsweise dem neuen HbA1c-Kriterium diagnostiziert wurden, unterschiedliche Risiken für Komplikationen aufweisen. Auch die in Deutschland durchgeführte KORA-Studie zeigt, dass mit HbA1c- und mit Glukosemessungen Diabetesdiagnosen für unterschiedliche Populationen gestellt werden.

Abstract

The American Diabetes Association (ADA) recommends HbA1c ≥ 6.5 % as an alternative criterion for the diagnosis of type 2 diabetes (T2DM). The International Expert Committee with ADA, EASD, and IDF experts even considers HbA1c as superior to glucose-based criteria for the diagnosis of diabetes. A review of present epidemiological studies shows that switching from glucose to HbA1c criteria would have serious consequences, for instance for the prevalence of diabetes in the population. In most studies the prevalence of T2DM decreased, sometimes dramatically, with diagnosis of diabetes by HbA1c ≥ 6.5 % instead of the oral glucose tolerance test (OGTT). In studies published so far, the sensitivity of HbA1c for the identification of diabetes cases diagnosed with glucose-based criteria ranged from 17 to 78 %, the positive predictive value ranged from 15 to 98 %, indicating sometimes very small overlap of populations defined as diabetic by glucose or HbA1c criteria. Prevalence of prediabetes also varied considerably when different criteria (WHO 1999, ADA 2003, HbA1c 5.7–6.4 %, HbA1c 6.0–6.4 %) were used, there was little overlap of the populations with prediabetes by different criteria. Subjects having a diagnosis of diabetes only by OGTT showed a somewhat more adverse metabolic profile than subjects diagnosed only by the HbA1c criterion. There is still a lack of prospective data showing whether subjects diagnosed with diabetes by either glucose criteria or by the new HbA1c criterion have different risks of complications. The German KORA study also gave evidence that different populations are diagnosed with diabetes by applying HbA1c and glucose criteria.

Literatur

  • 1 Consensus Committee . Consensus Statement on the Worldwide Standardization of the Hemoglobin A1C Measurement: the American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine, and the International Diabetes Federation.  Diabetes Care. 2007;  30 2399-2400
  • 2 American Diabetes Association . Standards of Medical Care in Diabetes – 2010.  Diabetes Care. 2010;  33 11-61
  • 3 International Expert Committee . International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes.  Diabetes Care. 2009;  32 1327-1334
  • 4 American Association of Clinical Endocrinologists Board of Directors and American College of Endocrinologists Board of Trustees . American Association of Clinical Endocrinologists / American College of Endocrinology Statement on the Use of Hemoglobin A1c for the Diagnosis of Diabetes.  Endocr Pract. 2010;  16 155-156
  • 5 World Health Organization .Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Geneva: WHO; 2006
  • 6 Stellungnahme der Deutschen Diabetes Gesellschaft, diabetesDE und des Kompetenznetzes Diabetes mellitus zur Verwendung des HbAc1-Wertes als Biomarker zur Diabetesdiagnose. http://www.deutsche-diabetes-gesellschaft.de/redaktion/news/DiabetesDE_Stellungnahme_HbA1c092010.pdf
  • 7 Bloomgarden Z T. A1C: Recommendations, debates, and questions.  Diabetes Care. 2009;  32 e141-e147
  • 8 Kilpatrick E, Bloomgarden Z, Zimmet P. Is haemoglobin A1c a step forward for diagnosing diabetes?.  BMJ. 2009;  339 1288-1290
  • 9 Pani L N, Korenda L, Meigs J B et al. Effect of aging on A1C levels in individuals without diabetes: evidence from the Framingham Offspring Study and the National Health and Nutrition Examination Survey 2001–2004.  Diabetes Care. 2008;  31 1991-1996
  • 10 Davidson M B, Schriger D L. Effect of age and race / ethnicity on HbA1c levels in people without known diabetes mellitus: implications for the diagnosis of diabetes.  Diabetes Res Clin Pract. 2010;  87 415-421
  • 11 Herman W H, Ma Y, Uwaifo G et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program.  Diabetes Care. 2007;  30 2453-2457
  • 12 Snieder H, Sawtell P A, Ross L et al. HbA(1c) levels are genetically determined even in type 1 diabetes: evidence from healthy and diabetic twins.  Diabetes. 2001;  50 2858-2863
  • 13 Borg R, Vistisen D, Witte D R et al. Comparing risk profiles of individuals diagnosed with diabetes by OGTT and HbA1c.  Diabet Med. 2010;  27 906-910
  • 14 Christensen D L, Witte D R, Kaduka L et al. Moving to an a1c-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups.  Diabetes Care. 2010;  33 580-582
  • 15 Jørgensen M E, Bjerregaard P, Borch-Johnsen K et al. New diagnostic criteria for diabetes: Is the change from glucose to hba1c possible in all populations?.  J Clin Endocrin Metab. 2010;  (Epub ahead of print)
  • 16 Mostafa S A, Davies M J, Webb D et al. The potential impact of using glycated haemoglobin as the preferred diagnostic tool for detecting Type 2 diabetes mellitus.  Diabet Med. 2010;  27 762-769
  • 17 Rathmann W, Kowall B, Tamayo T et al. Hemoglobin A1c and glucose criteria identify different subjects as having type 2 diabetes in middle-aged and older populations: The KORA S4 / F4 Study.  Ann Med. 2010;  (Epub ahead of print)
  • 18 Carson A P, Reynolds K, Fonseca V A et al. Comparison of A1c and Fasting Glucose Criteria to Diagnose Diabetes Among U.S. Adults.  Diabetes Care. 2010;  33 95-97
  • 19 Lorenzo C, Haffner S M. Performance characteristics of the new definition of diabetes. The Insulin Resistance Atherosclerosis Study.  Diabetes Care. 2010;  33 335-337
  • 20 Zhou X, Pang Z, Gao W et al. Performance of an A1C and fasting capillary blood glucose test for screening newly diagnosed diabetes and prediabetes defined by an oral glucose tolerance test in Quingdao, China.  Diabetes Care. 2010;  33 545-550
  • 21 Lu Z X, Walker K Z, O’Dea K et al. A1c for screening and diagnosis of type 2 diabetes in routine clinical practice.  Diabetes Care. 2010;  33 817-819
  • 22 Van’t Riet E, Alssema M, Rijkelijkhuizen J M et al. Relationship between A1C and glucose levels in the general Dutch population. The New Hoorn Study.  Diabetes Care. 2010;  33 61-66
  • 23 Kramer C K, Araneta M RG, Barrett-Connor E. A1C and diabetes diagnosis: The Rancho Bernardo Study.  Diabetes Care. 2010;  33 101-103
  • 24 Selvin E, Steffes M W, Gregg E et al. Performance of glycated hemoglobin for the classification and prediction of diabetes.  Diabetes Care. 2010;  (Epub ahead of print)
  • 25 Cowie C C, Rust K F, Byrd-Holt D D et al. Prevalence of diabetes and high risk for diabetes using A1C Criteria in the U.S. population in 1988–2006.  Diabetes Care. 2010;  33 562-568
  • 26 Mann D M, Carson A P, Shimbo D et al. Impact of HbA1c screening criterion on the diagnosis of pre-diabetes among US adults.  Diabetes Care. 2010;  33 2190-2195
  • 27 Mohan V, Vijayachandrika V, Gokulakrishnan K et al. A1C cut points to define various glucose intolerance groups in Asian indians.  Diabetes Care. 2010;  33 515-519
  • 28 Mannucci E, Ognibene A, Sposato I et al. Fasting plasma glucose and glycated haemoglobin in the screening of diabetes and impaired glucose tolerance.  Acta Diabetol. 2003;  40 181-186
  • 29 Mostafa S A, Khunti K, Srinivasan B T et al. The potential impact and optimal cut-points of using glycated haemoglobin, HbA1c, to detect people with impaired glucose regulation in a UK multi-ethnic cohort.  Diabetes Res Clin Pract. 2010;  90 100-108
  • 30 Olson D E, Rhee M K, Herrick K et al. Screening for diabetes and prediabetes with proposed A1c-based diagnostic criteria.  Diabetes Care. 2010;  33 2184-2189
  • 31 Lorenzo C, Wagenknecht L E, Hanley A JG et al. Hemoglobin A1c between 5.7 and 6.4 % as a marker for identifying prediabetes, insulin sensitivity and secretion, and cardiovascular risk factors: The Insulin Resistance Atherosclerosis Study (IRAS).  Diabetes Care. 2010;  33 2104-2109
  • 32 Færch K, Borch-Johnsen K, Vaag A et al. Sex differences in glucose levels: a consequence of physiology or methodological convenience? The Inter99 study.  Diabetologia. 2010;  53 858-865
  • 33 Rathmann W, Strassburger K, Giani G et al. Differences in height explain gender differences in the response to the oral glucose tolerance test.  Diabet Med. 2008;  25 1374-1375
  • 34 Bao Y, Ma X, Li H et al. Glycated haemoglobin A1c for diagnosing diabetes in Chinese population: cross sectional epidemiological survey.  BMJ. 2010;  340 c2249
  • 35 Rathmann W, Haastert B, Icks A et al. High prevalence of undiagnosed diabetes mellitus in Southern Germany: Target populations for efficient screening. The KORA survey 2000.  Diabetologia. 2003;  46 182-189
  • 36 Tuomilehto J, Lindström J, Eriksson J G Finnish Diabetes Prevention Study Group et al.,. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.  N Engl J Med.. 2001;  344 1343-1350
  • 37 Knowler W C, Barrett-Connor E, Fowler S E et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.  N Engl J Med.. 2002;  346 393-403
  • 38 Boronat M, Saavedra P, López-Ríos L et al. Differences in cardiovascular risk profile of diabetic subjects discordantly classified by diagnostic criteria based on glycated hemoglobin and oral glucose tolerance test.  Diabetes Care. 2010;  (Epub ahead of print)
  • 39 Araneta M RG, Grandinetti A, Chang H K. A1C and diabetes diagnosis among Filipino-Americans, Japanese-Americans, and native Hawaiians.  Diabetes Care. 2010;  (Epub ahead of print)
  • 40 Selvin E, Zhu H, Brancati F L. Elevated A1c in adults without a history of diabetes in the U.S.  Diabetes Care. 2009;  32 828-833
  • 41 Kumar P R, Bhansali A, Ravikiran M. Utility of glycated hemoglobin in diagnosing type 2 diabetes mellitus: a community-based study.  J Clin Endocrinol Metab. 2010;  95 2832-2835
  • 42 Cowie C C, Rust K F, Ford E S et al. Full accounting of diabetes and pre-diabetes in the U.S. population in 1988–1994 and 2005–2006.  Diabetes Care. 2009;  32 287-294
  • 43 Jesudason D R, Dunstan K, Leong D et al. Macrovascular risk and diagnostic criteria for type 2 diabetes. Implications for the use of FPG and HbA1c for cost-effective screening.  Diabetes Care. 2003;  26 485-490
  • 44 Buell C, Kermah D, Davidson M B. Utility of A1C for diabetes screening in the 1999–2004 NHANES Population.  Diabetes Care. 2007;  30 2233-2235

Dr. B. KowallMSc 

Deutsches Diabetes Zentrum an der Heinrich-Heine Universität

Auf’m Hennekamp 65

40225 Düsseldorf

Phone: 02 11 / 3 38 22 76

Fax: 02 11 / 3 38 26 77

Email: bernd.kowall@ddz.uni-duesseldorf.de

    >