Synthesis of \(\alpha \)-Amino Acid Derivatives by Biomimetic Transamination

Significance: Shi and co-workers have developed a methodology to synthesize \(\alpha \)-amino acid derivatives 3 from \(\alpha \)-keto esters 2, catalyzed by cinchona alkaloid derivative 1. This is the first catalytic highly enantioselective synthesis of \(\alpha \)-amino acid derivatives 3 via biomimetic transamination. The proton of the ammonium ion in the transition state is delivered to the \(si \)-face of the substrate, affording the \((R) \)-\(\alpha \)-amino ester as the major enantiomer.

Comment: Optically active \(\alpha \)-amino acids and their derivatives are an important class of molecules in biology and in organic synthesis. However, it remains a challenge to develop highly enantioselective syntheses of them to date. Here, a very efficient method for the synthesis of \(\alpha \)-amino acid derivatives via biomimetic transamination has been reported, which also illustrates the synthetic potential of organocatalytic biomimetic transamination.

Plausible mechanism of the biomimetic transamination and proposed transition state:

![Plausible mechanism](image)

1. \(R \)CO\(_2\)C\(_2\)Et\(_3\)
2. Ar, Alk
3. 22 examples
4. 47–71% yield
5. \(er = 94:6 \) to \(96:4 \)
6. \(\text{On-Bu} \)
7. \(\text{OH} \)
8. \(\text{H}^+ \)
9. \(\text{N} \)