Synthesis of α-Amino Acid Derivatives by Biomimetic Transamination

Significance: Shi and co-workers have developed a methodology to synthesize α-amino acid derivatives 3 from α-keto esters 2, catalyzed by cinchona alkaloid derivative 1. This is the first catalytic highly enantioselective synthesis of α-amino acid derivatives 3 via biomimetic transamination. The proton of the ammonium ion in the transition state is delivered to the si-face of the substrate, affording the (R)-α-amino ester as the major enantiomer.

Comment: Optically active α-amino acids and their derivatives are an important class of molecules in biology and in organic synthesis. However, it remains a challenge to develop highly enantioselective syntheses of them to date. Here, a very efficient method for the synthesis of α-amino acid derivatives via biomimetic transamination has been reported, which also illustrates the synthetic potential of organocatalytic biomimetic transamination.

Plausible mechanism of the biomimetic transamination and proposed transition state:

1. **Chemical structure and reaction scheme:**

 ![Chemical structure and reaction scheme](image)

 Scheme:

 1. Reaction of α-keto esters 2 with primary amines
 2. Catalysis by cinchona alkaloid derivative 1
 3. Formation of α-amino acid derivatives 3

SYNFACTS Contributors: Benjamin List, Qinggang Wang

SYNFACTS 2011, 10, 1127-1127 Published online: 20.09.2011

DOI: 10.1055/s-0030-1261125; Reg-No.: B10111SF

SYNFACTS Contributors: Benjamin List, Qinggang Wang

SYNFACTS 2011, 10, 1127-1127 Published online: 20.09.2011

DOI: 10.1055/s-0030-1261125; Reg-No.: B10111SF