Organocatalytic Asymmetric Biomimetic Transamination: From \(\alpha \)-Keto Esters to Optically Active \(\alpha \)-Amino Acid Derivatives

J. Am. Chem. Soc. 2011, 133, 12914-12917.

Synthesis of \(\alpha \)-Amino Acid Derivatives by Biomimetic Transamination

Significance: Shi and co-workers have developed a methodology to synthesize \(\alpha \)-amino acid derivatives 3 from \(\alpha \)-keto esters 2, catalyzed by cinchona alkaloid derivative 1. This is the first catalytic highly enantioselective synthesis of \(\alpha \)-amino acid derivatives 3 via biomimetic transamination. The proton of the ammonium ion in the transition state is delivered to the \(si \)-face of the substrate, affording the \((R)\)-\(\alpha \)-amino ester as the major enantiomer.

Comment: Optically active \(\alpha \)-amino acids and their derivatives are an important class of molecules in biology and in organic synthesis. However, it remains a challenge to develop highly enantioselective syntheses of them to date. Here, a very efficient method for the synthesis of \(\alpha \)-amino acid derivatives via biomimetic transamination has been reported, which also illustrates the synthetic potential of organocatalytic biomimetic transamination.