This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited

OH

OTBS

OTBS

OTBS

но

88% yield, er = 97.5:2.5

86% yield, er = 96:4 $\,$ 82% yield, er = 95:5 $\,$ 78% yield, er = 95:5 $\,$

R = TES, 94% yield, er = 95:5 R = TBDPS, 75% yield, er = 95:5

Proposed catalytic cycle:

Significance: The desymmetrization of *meso*-diols is a highly useful asymmetric transformation since it can provide synthetically valuable intermediates with theoretically quantitative yields. The authors utilized catalysts **1** as a substrate-binding module as well as a silyl chloride activator. High enantioselectivity was obtained for cyclic and acyclic *meso*-diols (er up to 97.5:2.5). Also, the substituent adjacent to the imidazole group affects the enantioselectivity dramatically and displays strong match/mismatch effects on the enantioselectivity.

SYNFACTS Contributors: Benjamin List, Ji-Woong Lee Synfacts 2011, 9, 1013-1013 Published online: 19.08.2011 **DOI:** 10.1055/s-0030-1260922; **Reg-No.:** B08711SF

Comment: The presented method features a highly elegant substrate activation mode. As a part of the proposed catalytic cycle, the authors detected a reversible covalent bond equilibrium between catalyst and diol adduct $\mathbf{2}$ ($K_{\rm eq}=0.20$). Also, from the X-ray crystal structure obtained with 4-bromobenzyl alcohol and $\mathbf{1c}$, the configuration of adduct $\mathbf{2}$ was assigned as depicted in the Scheme (highlighted in red), although the observed diastereomeric ratio of $\mathbf{2}$ was low (dr = 60:40). Further detailed investigations on the catalytic intermediates ($\mathbf{2}$ or $\mathbf{3}$) are anticipated.