Cooperative Transition-Metal and Chiral Brønsted Acid Catalysis

Significance: The authors report a protocol for the enantioselective hydrogenation of various ketimines in the presence of a chiral Brønsted catalyst and a well-defined nonchiral iron catalyst. This work demonstrates that enantioselective reduction reactions with hydrogen can be performed without employing precious-metal catalysts and chiral ligands yielding products with high yields and enantioselectivities.

Comment: NMR spectroscopic studies revealed the formation of complex 1 when a 1:1 mixture of TRIP and the Knölker iron complex (cat. 1) were mixed. Upon addition of a ketimine to the reaction mixture, the formation of complex 2 was observed. These results suggest that a cooperative catalytic system is operative for this transformation.

Selected examples:

- HNPh
 - 80% yield
 - 94% ee

- MeO
 - 60% yield
 - 93% ee

- HN-PMP
 - 91% yield
 - 93% ee

- HN-PMP
 - 91% yield
 - 83% ee

Proposed reaction intermediates:

- complex 1
- complex 2