Copper-Catalyzed Stereospecific Allylic Alkylation of Ketene Silyl Acetals

Significance: Allylic alkylation of enolates is an important transformation in organic synthesis. The copper-catalyzed method described employs unsymmetrical internal allylic phosphates as electrophiles, which react with excellent \(\gamma \)-regioselectivity and excellent \(Z \)-diastereoselectivity.

Comment: The \(\gamma \)-selective allylic alkylation of chiral allylic phosphates proceeds with efficient 1,3-\(\alpha \)-to-\(\gamma \) chirality transfer. The stereochemical outcome of the product is dependent on the \(E/Z \) geometry of the allylic phosphate. The authors propose the reaction pathway shown above, invoking an allyl copper(III) intermediate.

D. LI, H. OHMIYA,* M. SAWAMURA* (HOKKAIDO UNIVERSITY, SAPPORO, JAPAN)

Copper-Catalyzed \(\gamma \)-Selective and Stereospecific Allylic Alkylation of Ketene Silyl Acetals

Key words

allylic alkylation
copper
regioselectivity

Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

SYNFACTS Contributors: Hisashi Yamamoto, Patrick Brady

SYNFACTS 2011, 7, 0737-0737 Published online: 17.06.2011

DOI: 10.1055/s-0030-1260653; Reg-No.: H06311SF