K. J. STOWERS, K. C. FORTNER, M. S. SANFORD (UNIVERSITY OF MICHIGAN, ANN ARBOR, USA)

Aerobic Pd-Catalyzed sp³ C–H Olefination: A Route to Both N-Heterocyclic Scaffolds and Alkenes

Pd-Catalyzed Pyridine-Directed Aerobic Olefination of Unactivated sp³ C–H Sites

Significance: A new palladium/polyoxometalate-catalyzed aerobic olefination of unactivated sp³ C–H bonds has been developed. Nitrogen-containing heterocycles act as directing groups and the products undergo reversible intramolecular Michael addition to form bicyclic nitrogen-containing scaffolds.

Comment: The cationic bicyclic products undergo further synthetic transformations. For example, PtO₂-catalyzed hydrogenation yields piperidines, and reduction with NaBH₄ gives 1,2,3,6-tetrahydropyridines. The pyridinium products can also be converted into the corresponding alkenes under basic conditions.

Selected examples:

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph, Me, OMe, CF₃</td>
<td>CO₂Et, CO₂Bu, CO₂Bn, CO₂H, CONMe₂, COEt</td>
<td>OAc, OTf, BF₄⁻</td>
</tr>
</tbody>
</table>

Selected examples:

- **EtO₂C⁻**
 - **TIO⁻**
 - 89% yield
- **EtO₂C⁻**
 - **BF₄⁻**
 - 71% yield
- **EtO₂C⁻**
 - 75% yield
- **HO₂C⁻**
 - **BF₄⁻**
 - 69% yield

SYNFACTS Contributors: Paul Knochel, Andreas K. Steib

SYNFACTS 2011, 7, 0765-0765 Published online: 17.06.2011

DOI: 10.1055/s-0030-1260502; **Reg-No.: P06911SF**