Pd-Catalyzed Pyridine-Directed Aerobic Olefination of Unactivated sp^3 C–H Sites

Significance: A new palladium/polyoxometalate-catalyzed aerobic olefination of unactivated sp^3 C–H bonds has been developed. Nitrogen-containing heterocycles act as directing groups and the products undergo reversible intramolecular Michael addition to form bicyclic nitrogen-containing scaffolds.

Comment: The cationic bicyclic products undergo further synthetic transformations. For example, PtO_2-catalyzed hydrogenation yields piperidines, and reduction with NaBH_4 gives 1,2,3,6-tetrahydropyridines. The pyridinium products can also be converted into the corresponding alkenes under basic conditions.

Selected examples:

- **EtO_2C**
 - 89% yield

- **EtO_2C**
 - 71% yield

- **EtO_2C**
 - 75% yield

- **EtO_2C**
 - 69% yield

SYNFACTS Contributors: Paul Knochel, Andreas K. Steib

Synfacts 2011, 7, 0765-0765 Published online: 17.06.2011

DOI: 10.1055/s-0030-1260502; **Reg-No.:** P06911SF