Pd-Catalyzed Pyridine-Directed Aerobic Olefination of Unactivated sp³ C–H Sites

Significance: A new palladium/polyoxometalate-catalyzed aerobic olefination of unactivated sp³ C–H bonds has been developed. Nitrogen-containing heterocycles act as directing groups and the products undergo reversible intramolecular Michael addition to form bicyclic nitrogen-containing scaffolds.

Comment: The cationic bicyclic products undergo further synthetic transformations. For example, PtO2-catalyzed hydrogenation yields piperidines, and reduction with NaBH₄ gives 1,2,3,6-tetrahydropyridines. The pyridinium products can also be converted into the corresponding alkenes under basic conditions.

Equation:

1) Pd(MeCN)₄(BF₄)₂ (10 mol%)
H₂[PMo₁₁VO₄₀] (3 mol%)
NaOAc (10 mol%) or NaOTf (1.1 equiv)
air, AcOH, 110 °C, 18 h
2) in some cases: aq NaBF₄

Selected examples:

- **89% yield**
- **71% yield**
- **75% yield**
- **69% yield**

SYNFACTS Contributors: Paul Knochel, Andreas K. Steib

Synfacts 2011, 7, 0765-0765 Published online: 17.06.2011
DOI: 10.1055/s-0030-1260502; Reg-No.: P06911SF