Pd-Catalyzed Pyridine-Directed Aerobic Olefination of Unactivated sp³ C–H Sites

Significance: A new palladium/polyoxometalate-catalyzed aerobic olefination of unactivated sp³ C–H bonds has been developed. Nitrogen-containing heterocycles act as directing groups and the products undergo reversible intramolecular Michael addition to form bicyclic nitrogen-containing scaffolds.

Comment: The cationic bicyclic products undergo further synthetic transformations. For example, PtO₂-catalyzed hydrogenation yields piperidines, and reduction with NaBH₄ gives 1,2,3,6-tetrahydropyridines. The pyridinium products can also be converted into the corresponding alkenes under basic conditions.

Selected examples:

![Selected examples](image)

Equation:

\[
\text{R}^1 \text{Me/C}_2\text{H}_4\text{CO}_2\text{Et} + \text{Me/C}_2\text{H}_4\text{CO}_2\text{Et} \xrightarrow{\text{air, AcOH, 110 °C, 18 h}} \text{Me/C}_2\text{H}_4\text{CO}_2\text{Et} \]

up to 92% yield

- **R₁** = Ph, Me, OMe, CF₃
- **R₂** = CO₂Et, CO₂Bu, CO₂Bn, CO₂H, CONMe₂, COEt
- **X** = OAc, OTf, BF₄-