Asymmetric Synthesis of (S)-Ketoprofen

Significance: A synthesis of the non-steroidal anti-inflammatory drug (S)-ketoprofen exemplifies a new general tandem catalysis approach to the enantioselective organocatalytic \(\alpha \)-arylation of aldehydes. The scope of the reaction is illustrated by 22 examples (67–95% yield, 91–94% ee) involving ten different aldehydes and 13 different diaryliodonium salts. A five-step synthesis of catalyst C (17% overall) from L-phenylglycine \(N \)-methylamide is provided.

Comment: A mechanism is proposed involving reaction of the aryl copper(III) species G (derived from oxidative addition of CuBr to the diaryliodonium salt A) with the enamine H (derived from condensation of the organocatalyst C with propanal) to give the \(\eta^1 \)-iminium copper(III) species I. Reductive elimination with retention of configuration then gives the \(\alpha \)-aryl iminium salt J, which hydrolyzes to the product with regeneration of the organocatalyst C.

Proposed mechanism for the aldehyde \(\alpha \)-arylation:

\[
\text{BrCu}^{(III)}\text{OTf} + \text{Me}_2\text{N}\text{C}=\text{O} \rightarrow \text{Me}_2\text{N}\text{C}^{+}\text{Cu}^{(III)}\text{Ph}^{-}\text{OTf}^{-} \rightarrow \text{Me}_2\text{N}\text{C}^{+}\text{Cu}^{(III)}\text{Ph}^{-} \rightarrow \text{Me}_2\text{N}\text{C}=\text{O} + \text{CuBr}
\]