Synlett 2011(8): 1165-1167  
DOI: 10.1055/s-0030-1259940
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Zwitterionic-Type Molten Salt: A Mild and Efficient Organocatalyst for the Synthesis of 3-Aminoalkylated Indoles via Three-Component Coupling Reaction

Dhiman Kundu, Avik Kr. Bagdi, Adinath Majee, Alakananda Hajra*
Department of Chemistry, Visva Bharati University, Santiniketan, West Bengal 731235, India
Fax: +91(3463)262728; e-Mail: alakananda.hajra@visva-bharati.ac.in;
Further Information

Publication History

Received 15 November 2010
Publication Date:
07 April 2011 (online)

Abstract

A general and efficient method has been developed for the synthesis of 3-aminoalkylated indoles by a three-component coupling of indoles, aldehydes, and amines in the presence of a catalytic amount of zwitterionic-type molten salt under solvent-free conditions. The non-hazardous experimental procedure, mild reaction conditions, and the reusability of the catalyst are the notable advantages of the present method.

    References and Notes

  • 1a Multicomponent Reactions   Zhu J. Bienaymé H. Wiley-VCH; Weinheim: 2005. 
  • 1b Tanaka K. Toda F. Chem. Rev.  2000,  100:  1025 
  • 1c Hobbs HR. Thomas NR. Chem. Rev.  2007,  107:  2786 
  • 1d Dömling A. Chem. Rev.  2006,  106:  17 
  • 1e Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 1f Mizuno N. Misono M. Chem. Rev.  1998,  98:  199 
  • 2a Sundberg RJ. In The Chemistry of Indoles   Academic Press; New York: 1996. 
  • 2b Bao B. Sun Q. Yao X. Hong J. Lee CO. Sim CJ. Im KS. Jung JH. J. Nat. Prod.  2005,  68:  711 
  • 2c Casapullo A. Bifulco G. Bruno I. Riccio R. J. Nat. Prod.  2000,  63:  447 
  • 2d Garbe TR. Kobayashi M. Shimizu N. Takesue N. Ozawa M. Yukawa H. J. Nat. Prod.  2000,  63:  596 
  • 3a Sundberg RJ. In The Chemistry of Indoles   Academic Press; New York: 1970. 
  • 3b Jiang B. Yang CG. Wang J. J. Org. Chem.  2001,  66:  4865 
  • 3c Zhang HC. Bonaga LVR. Ye H. Derian CK. Damiano BP. Maryanoff BE. Bioorg. Med. Chem. Lett.  2007,  17:  2863 
  • 3d Bandini M. Eichholzer A. Angew. Chem. Int. Ed.  2009,  48:  9608 
  • 3e Humphrey GR. Kuethe JT. Chem. Rev.  2006,  106:  2875 
  • 4a Moore RE. Cheuk C. Patterson CGML. J. Am. Chem. Soc.  1984,  106:  6456 
  • 4b Fridkin G. Boutard N. Lubell WD. J. Org. Chem.  2009,  74:  5603 
  • 5 Wynne JH. Stalick WM. J. Org. Chem.  2002,  67:  5850 
  • 6a Olyaei A. Shams B. Sadeghpour M. Gesmati F. Razazaine Z. Tetrahedron Lett.  2010,  51:  6086 
  • 6b Yadav DK. Patel R. Srivastava VP. Watel G. Yadav LDS. Tetrahedron Lett.  2010,  51:  5701 
  • 6c Srihari P. Sing VK. Bhunia DC. Yadav JS. Tetrahedron Lett.  2009,  50:  3763 
  • 6d Das B. Kumar JN. Kumar AS. Damodar K. Synthesis  2010,  914 
  • 6e Sharifi A. Mirzaei M. Naimi-Jamal MR. Monatsh. Chem.  2001,  132:  875 
  • 6f Dai H.-G. Li J.-T. Li TS. Synth. Commun.  2006,  36:  1829 
  • 6g Zao J.-L. Liu L. Zhang H.-B. Wu Y.-C. Wang D. Chen Y.-F. Synlett  2006,  96 
  • 6h Bello JS. Amado DF. Kouznetsov VV. Rev. Soc. Quim. Peru  2008,  74:  190 
  • 6i Gruback H.-J. Arend M. Risch N. Synthesis  1996,  883 
  • 6j Saidi MR. Azizi N. Naimi-Jamal MR. Tetrahedron Lett.  2001,  42:  8111 
  • 7a Das S. Rahman M. Kundu D. Majee A. Hajra A. Can. J. Chem.  2010,  88:  150 
  • 7b Ranu BC. Dey SS. Hajra A. Tetrahedron  2003,  59:  2417 
  • 8a Kundu D. Debnath RK. Majee A. Hajra A. Tetrahedron Lett.  2009,  50:  6998 
  • 8b Kundu D. Majee A. Hajra A. Catal. Commun.  2010,  11:  1157 
  • 10a Chakraborti AK. Roy SR. Kumar D. Chopra P. Green Chem.  2008,  10:  1111 
  • 10b Chakraborti AK. Roy SR. J. Am. Chem. Soc.  2009,  131:  6902 
9

Synthesis of 2-Methyl-3-(morpholin-4-ylpyridin-2-ylmethyl)-1 H -indole (Entry 16, Table 1): A mixture of 2-pyridinecarboxaldehyde (190 µL, 214 mg, 2 mmol), morpholine (350 µL, 348 mg, 4 mmol), and 2-methylindole (262 mg, 2 mmol) was stirred in the presence of 4-(1-imidazolium)butane sulfonate (82 mg, 20 mol%) at 60 ˚C for 2 h. After completion of the reaction (TLC) the reaction mixture was extracted with Et2O (3 × 10 mL). Evaporation of solvent furnished the crude product which was subjected to column chromatography to obtain the pure product (498 mg, 81%) as a brown solid; mp 145-146 ˚C. IR (KBr): 3502, 2738, 1587, 1460, 1377 cm. ¹H NMR (500 MHz, CDCl3): δ = 8.44 (d, J = 3.0 Hz, 1 H), 8.19 (s, 1 H), 8.07 (t, J = 3.0 Hz, 1 H), 7.80 (d, J = 8.0 Hz, 1 H), 7.55 (t, J = 8.5 Hz, 1 H), 7.15-7.17 (m, 1 H), 7.02-7.10 (m, 3 H), 4.76 (s, 1 H), 3.72-3.79 (m, 4 H), 2.58 (m, 2 H), 2.44 (s, 3 H), 2.37-2.41 (m, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 162.6, 148.6, 136.8, 135.4, 133.4, 127.0, 122.1, 121.8, 121.0, 120.2, 119.6, 110.6, 110.4, 71.1, 67.4 (2 × C), 67.4 (2 × C), 12.5. Anal. Calcd for C19H21N3O: C, 74.24; H, 6.89; N, 13.67. Found: C, 74.10; H, 6.72; N, 13.58. The catalyst, left in the reaction vessel, was dried under vacuum and was reused for subsequent reactions.