Control of Reaction Enantioselectivity with a Molecular Motor Switch

Significance: Wang and Feringa describe the use of molecular motor 1 as a chiral switchable organocatalyst. Molecular motor 1 decorated with Brønsted acidic thiourea and Brønsted basic DMAP groups can be driven through an unidirectional rotatory cycle with a series of two photoisomerizations and two thermal isomerizations. The rotation of the molecular motor provides the means to control the relative orientations of the two catalytic moieties. It was demonstrated that different preformed isomers of the molecular motor enable the switching of the enantioselectivity of the addition of o-methoxythiophenol to cyclohexanone. The (P,P)-trans-1 (7% conversion, 15 h) racemic product was obtained with >99% yield at 312 nm, 20 °C. Four isomerization steps of the molecular motor provided 83% conversion and 78% yield with (S/R) = 23:77 at 70 °C. (M,M)-cis-1 (50% conversion, (S/R) = 75:25) was obtained at 312 nm, –60 °C with 81% yield at 100%. (P,P)-trans-1 was unstable.

Comment: The Feringa group has previously demonstrated that the chiral crowded alkene moiety in 1 is capable of performing a unidirectional motion through a series of four isomerizations (Org. Biomol. Chem. 2008, 6, 507). In the current paper, three distinct isomers of alkene 1 demonstrated different enantioselectivities for a well-established sulfa-Michael reaction (for example, see: N. K. Rana, S. Selvakumar, V. K. Singh J. Org. Chem. 2010, 75, 2089). However, full rotation of the ‘molecular motor’ could not be achieved in situ. Three isomers of the alkene had to be prepared and only the ‘switching on’ step ([P,P]-trans-1 to [P,P]-cis-1) demonstrated to be compatible with sulfa-Michael reaction conditions. Although an interesting catalyst design is presented, its true potential has yet to be revealed.

SYNFACTS Contributors: Benjamin List, Ilija Ćorić
Synfacts 2011, 5, 0553-0553 Published online: 15.04.2011
DOI: 10.1055/s-0030-1259851; Reg-No.: B02611SF