D. B. C. Martin, C. D. Vanderwal* (University of California, Irvine, USA)

A Synthesis of Strychnine by a Longest Linear Sequence of Six Steps

Synthesis of Strychnine

![Chemical structures and reactions]

Significance: Strychnine is a highly toxic alkaloid isolated from seeds of the *Strychnos nux vomica* tree. It was first synthesized by Woodward and co-workers in 1954, and has since proved a popular target within the synthetic community. This approach is highly efficient and only requires six steps in the longest linear sequence.

Comment: The conversion of Zincke aldehyde **C** into tetracycle **D** via base-mediated cyclization proceeded efficiently and in good yield (D. B. Martin, C. Vanderwal J. Am. Chem. Soc. 2009, 131, 3472). Alkylation of bromide **G** (three steps from 1,4-butynediol) with amine **F** provided alcohol **H**. This underwent a 1,4-Brook rearrangement in situ, which upon treatment with a copper(I) source provided the core of strychnine. Unfortunately, after extensive optimization, the yield remained low and the major byproduct was due to protodesilylation.

SYNFACTS Contributors: Steven V. Ley, Philippa B. Cranwell

Categories: Synthesis of Natural Products and Potential Drugs

Key Words: Wieland–Gumlich intermediates, Brook rearrangement, intramolecular conjugate addition, Zincke aldehydes