S.-F. ZHU, X.-G. SONG, Y. LI, Y. CAI, Q.-L. ZHOU* (NANKAI UNIVERSITY, TIANJIN, P. R. OF CHINA)

Enantioselective Copper-Catalyzed Intramolecular O–H Insertion: An Efficient Approach to Chiral 2-Carboxy Cyclic Ethers

Enantioselective Synthesis of 2-Carboxy Cyclic Ethers

Significance: The formation of new carbon–heteroatom bonds using transition-metal-catalyzed carbone insertion reactions into X–H bonds (X = O, N, S) is a useful synthetic tool. While highly enantioselective variants of intermolecular O–H insertions are known, selective intramolecular versions have not been developed. Herein, the authors present the first highly enantioselective copper-catalyzed O–H insertion approach used for the preparation of chiral 2-carboxy cyclic ethers of type 2.

Comment: Starting from readily available ω-hydroxy-α-diazo esters 1, a number of chiral cyclic ethers of type 2 with various ring sizes could be prepared in good to excellent yields and high enantioselectivities. The combination of CuOTf and the chiral spiro bisoxazoline ligand (Sa,S,S)-3 in the presence of catalytic amounts of NaBArF in non-coordinating solvents like methylene chloride was found to be crucial to achieve high selectivities. The products formed in this transformation are useful building blocks since the 2-carboxylic cyclic ether substructure can be found in several natural products and pharmaceuticals.

SYNFACTS Contributors: Mark Lautens, Norman Nicolaus

SYNFACTS 2011, 2, 0165-0165 Published online: 19.01.2011 DOI: 10.1055/s-0030-1259338; Reg-No.: L17010SF