Introduction

N-Hydroxyphthalimide (1, NHPI, Figure 1) is a white crystalline powder that has been used for the preparation of *O*-alkyl hydroxylamines, the functionalization of alkenes, halogenation of alkanes, the Ritter-type reactions of alkylbenzenes, and for the oxidation of alkylbenzenes, acetals, alkenes, and sulfides. Some other applications are described below.

![Figure 1](image)

Abstracts

(A) The ‘Mitsunobu-like’ reaction between a supported NHPI derivative using imidazole as a base followed by treatment with methylamine gives the corresponding primary or secondary *O*-alkyl hydroxylamines isolated in very high purity and in good yields.

(B) The silyl-hydroxylation of olefins bearing electron-withdrawing groups is accomplished by the reaction of NHPI with a silane. The trialkysilyl radical adds to the olefin to form an intermediate that, when trapped by molecular oxygen, forms the corresponding alcohol. The silyl-hydroxylation of olefins takes place with yields ranging from 61–99% and with very good selectivity.

This reagent is not very expensive, it is air-stable, and does not need particular conditions for storage, but precautions must be taken for its manipulation, because it can be very irritating to the eyes and the skin.

Preparation

This phthalimide derivative can be prepared by treating phthalic anhydride with hydroxylamine or hydroxylammonium sulphate under basic or neutral conditions.

![Scheme 1](image)
(C) The difficult oxidation of ethers to the related oxygen-containing compounds is accomplished with N-hydroxyphthalimide under an NO atmosphere. This reaction gives good and selective conversion of benzylic ethers to the corresponding aldehydes.\(^\text{13}\)

(D) The radical addition of masked aldehydes (1,3-dioxolanes) to electron-deficient alkenes is achieved using NHPI and benzoyl peroxide as polarity reversal catalyst in yields ranging from 46–88%. The tandem version of the reaction was also carried out using the same mild conditions.\(^\text{14}\)

(E) The metal-free catalytic aerobic oxidation of primary olefins by the in situ generation of peracetic acid from acetaldehyde is carried out by mixing all the reagents in the presence of N-hydroxyphthalimide and under an atmospheric pressure of oxygen. The isolated yield of the epoxides goes up to 96%.\(^\text{7}\)

(F) The direct nitration of aliphatic C–H bonds is performed under mild conditions by reacting NHPI with alkanes in a NO\(_2\) atmosphere at 70 °C and in the presence of air. A variety of alkanes were successfully nitrated by this NO/NHPI system in very useful yields.\(^\text{15}\)

References