Stereospecific Cross-Coupling of Secondary Alkyl Trifluoroborates

Significance: The cross-coupling of β-trifluoroboratoamide was shown to proceed with high selectivity. Thereby, the carbonyl group of the amide moiety serves as a hemilabile ligand inhibiting the undesired β-H-elimination pathway.

Comment: This remarkable cross-coupling of enantioenriched nonbenzylic secondary alkyl boron compounds with aryl halides was shown to proceed stereospecifically with inversion of configuration. This stereochemical outcome is attributed to an intramolecular coordination of the carbonyl group to the boron.

Selected examples:

- 66% yield; $X = Cl$
- 47% yield; $X = Br$
- 71% yield; $X = Cl$
- 83% yield; $X = Cl$
- 87% yield; $X = Cl$
- 79% yield; $X = Cl$
- 94% yield; $X = Cl$

Stereochemistry:

- (S)/(R) = 7:93
- (S)/(R) = 92:8
- (S)/(R) = 6:94
- (S)/(R) = 95:5
- (S)/(R) = 92:8