Synlett 2010(18): 2747-2750  
DOI: 10.1055/s-0030-1258995
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of (+)-Sclareolide Based on a Cyclic Enol Ether Ring Contraction Induced by Peroxy Acids

Juan M. Castro, Sofía Salido, Adolfo Sánchez, Joaquín Altarejos*
Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
Fax: +34(953)211876; e-Mail: jaltare@ujaen.es;
Further Information

Publication History

Received 1 July 2010
Publication Date:
08 October 2010 (online)

Abstract

(+)-Sclareolide has been synthesised from (+)-sclareol oxide in one step in high yield, by treatment with peroxy acids under very mild conditions. The reaction pathway does not follow the usual oxidative cleavage of the double bond of (+)-sclareol oxide, but the key intermediate is a five-membered ring hemiketal. The direct conversion of a six-membered cyclic enol ether into a γ-lactone is described for the first time.

    References and Notes

  • 1a First synthesis: Ruzicka L. Janot MM. Helv. Chim. Acta  1931,  14:  645 
  • 1b Structure elucidation: Ruzicka L. Seidel CF. Engel LL. Helv. Chim. Acta  1942,  25:  621 
  • 2 Kaneko H. Agric. Biol. Chem.  1971,  35:  1461 ; see also ref. 4
  • 3a Stoll M. Hinder M. Helv. Chim. Acta  1950,  33:  1251 
  • 3b Hinder M. Stoll M. Helv. Chim. Acta  1950,  1308 
  • 4 Ohloff G. In Fragrance Chemistry   Theimer ET. Academic Press; New York: 1982.  p.535 
  • 5 Fráter G. Bajgrowicz JA. Kraft P. Tetrahedron  1998,  54:  7633 
  • 6 Schumacher JN. inventors; US  2,905,576.  ; Chem. Abstr. 1960, 54, 13261
  • 7 Rocabayera X, Figueras S, Segret R, and Piera E. inventors; WO  2008095534.  ; Chem. Abstr. 2008, 149, 266054
  • 8 Kim SH. Danilenko M. Kim TS. Br. J. Pharmacol.  2008,  155:  814 
  • 9 Boggs A, Trias J, and Hecker S. inventors; WO  9,624,684.  ; Chem. Abstr. 1996, 125, 238654
  • 10 Nozoe S. Masuda J. Takahashi A. Kanou M. Tanaka K. Wakayama T. Koike N. Uchida T. Nagata T. Segawa T. Tanka S.   , ; Chem. Abstr. 1999, 131, 307085
  • 11 Subbiah V. inventors; WO  9,963,978.  ; Chem. Abstr. 1999, 132, 18772
  • 12 Gerke T, Sättler A, and Müllner S. inventors; WO  2002030385.  ; Chem. Abstr. 2002, 136, 299517
  • 13 Oh S. Jeong IH. Shin W.-S. Lee S. Bioorg. Med. Chem. Lett.  2003,  13:  2009 
  • See, as examples, the syntheses from ambrein:
  • 14a Lederer E. Mercier D. Experientia  1947,  3:  188 
  • And from labdanolic acid:
  • 14b de Pascual Teresa J. Urones JG. Montaña A. Basabe P. Tetrahedron Lett.  1985,  26:  5717 
  • For recent papers, see:
  • 15a Upar KB. Mishra SJ. Nalawade SP. Singh SA. Khandare RP. Bhat SV. Tetrahedron: Asymmetry  2009,  20:  1637 
  • 15b Snowden RL. Chemistry & Biodiversity  2008,  5:  958 
  • Recent examples:
  • 16a Wei J, Wu Y, Shi X, and Zhang Y. inventors; CN  1,683,352.  ; Chem. Abstr. 2006, 145, 145522
  • 16b Igarashi K, Takizawa S, Higaki N, and Hagiwara H. inventors; JP  2007222110.  ; Chem. Abstr. 2007, 147, 299478
  • 17 Recent example: Álvarez-Manzaneda E. Chahboun R. Cabrera E. Álvarez E. Haïdour A. Ramos JM. Álvarez-Manzaneda R. Hmamouchi M. Es-Samti H. Chem. Commun.  2009,  592 
  • 18a Barrero AF. Altarejos J. Álvarez-Manzaneda EJ. Ramos JM. Salido S. J. Org. Chem.  1996,  61:  2215 
  • 18b Barrero AF. Altarejos J. Álvarez-Manzaneda EJ. Ramos JM. Salido S. Tetrahedron  1993,  49:  6251 
  • 18c Barrero AF. Altarejos J. Álvarez-Manzaneda EJ. Ramos JM. Salido S. Tetrahedron  1993,  49:  9525 
  • 18d Barrero AF, Altarejos J, Álvarez-Manzaneda EJ, and Ramos JM. inventors; ES  2,044,780.  ; Chem. Abstr. 1994, 120, 299025
  • 18e Barrero AF, Altarejos J, and Salido S. inventors; ES  2,069,469.  ; Chem. Abstr. 1995, 123, 257086
  • 18f Barrero AF. Sánchez JF. Álvarez-Manzaneda EJ. Altarejos J. Muñoz M. Haïdour A. Tetrahedron  1994,  50:  6653 ; see also ref. 23b
  • 19 Castro JM. Salido S. Altarejos J. Nogueras M. Sánchez A. Tetrahedron  2002,  58:  5941 
  • 20a Cocker JD. Halsall TG. Bowers A. J. Chem. Soc.  1956,  4259 
  • 20b Cocker JD. Halsall TG. J. Chem. Soc.  1956,  4262 
  • 22 Gerke T, and Bruns K. inventors; DE  3,942,358.  ; Chem. Abstr. 1991, 115, 136446
  • Other oxidants normally yield mixtures of products 7 and 1 from 5/6. See as examples ref. 1a and:
  • 23a Zahra J.-P. Chauvet F. Coste-Manière I. Martres P. Perfetti P. Waegell B. Bull. Soc. Chim. Fr.  1997,  134:  1001 
  • 23b Barrero AF. Álvarez-Manzaneda EJ. Altarejos J. Salido S. Ramos JM. Tetrahedron  1993,  49:  10405 
  • 24a Urones JG. Basabe P. Marcos IS. Díez D. Sexmero MJ. Peral MH. Broughton HB. Tetrahedron  1992,  48:  10389 
  • 24b González AG. Francisco CG. Freire R. Hernández R. Salazar JA. Suárez E. Tetrahedron Lett.  1976,  1897 
  • 25 One occurrence for compound 11 has been found in the literature: Giles JA. Schumacher JN. Tetrahedron  1961,  14:  246 ; compounds 8-10 have never been described before
  • 26 Epimerization at C-8 of 1 is well known. See: Quideau S. Lebon M. Lamidey A.-M. Org. Lett.  2002,  4:  3975 
  • 27 Peng S. Qing F.-L. Li Y.-Q. Hu C.-M. J. Org. Chem.  2000,  65:  694 
  • 28 Li X. Wang F. Zhang H. Wang C. Song G. Synth. Commun.  1996,  26:  1613 
  • 29 Castro JM, Salido S, Altarejos J, Nogueras M, and Sánchez A. inventors; ES  2,238,003.  ; Chem. Abstr. 2006, 145, 397666
  • 31 Dehal SS. Marples BA. Stretton RJ. Tetrahedron Lett.  1978,  25:  2183 
  • 32a Hall SS. Chernoff HC. Chem. Ind.  1970,  27:  896 
  • 32b Armstrong A. Ashraff C. Chung H. Murtagh L. Tetrahedron  2009,  65:  4490 ; note that the oxidative rearrangement of the 3,4-dihydropyrans described in these articles leads to tetrahydrofuranones, not to γ-lactones
  • 33 Barton DHR. Parekh SI. Taylor DK. Tse C.-I. Tetrahedron Lett.  1994,  35:  5801 
21

Acid traces present in commercial CDCl3 were capable of transforming 5 into 6 during the NMR experiments. Previous neutralisation of the deuterated solvent was necessary.

30

In ref. 23a, V is postulated in a related reaction mechanism.