Synlett 2010(18): 2813-2817  
DOI: 10.1055/s-0030-1258801
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Efficient Friedel-Crafts Alkylation of Indoles and Pyrrole Catalyzed by Mesoporous 3D Aluminosilicate Catalyst with Electron-Deficient Olefins

T. Siddulu Naidua, V. V. Balasubramanianb, M. A. Charib, T. Moria,b,e, S. M. J. Zaidic, Salem S. Al-Deyabd, B. V. Subba Reddy*b,e, A. Vinu*a,b,e
a Ionics Materials Chemistry Group, Department of Chemistry, Hokkaido University
e-Mail: Sapporo 060-0810, Japan;
b International Center for Materials Nanoarchitectonics, WPI Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
Fax: +81(29)8604706; e-Mail: vinu.ajayan@nims.go.jp;
c Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
d Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Kingdom of Saudi Arabia
e NIMS-IICT Materials Research Center, Indian Institute of Chemical Technology, Hyderabad 500007, India
Further Information

Publication History

Received 6 August 2010
Publication Date:
30 September 2010 (online)

Abstract

The C3-selective Friedel-Crafts alkylation of indoles with electron-deficient olefins has been achieved using a mesoporous aluminosilicate catalyst with 3D cage-type porous structure to furnish the 3-alkylindole derivatives in excellent yields due to its high surface area, large pore volume and high acidity. Pyrrole also reacted efficiently under similar reaction conditions to give the corresponding 2-alkylated pyrrole derivatives in good yields.

    References and Notes

  • 1 Tabata N. Tomoda H. Takahashi Y. Haneda K. Iwai Y. Woodruff HB. Omura S. J. Antibiot.  1993,  46:  756 
  • 2 Moore RE. Cheuk C. Patterson GML. J. Am. Chem. Soc.  1984,  106:  6456 
  • 3 Moore RE. Cheuk C. Yang X.-QG. Patterson GML. Bonjouklian R. Smitka TA. Mynderse JS. Foster RS. Jones ND. Swartzendruber JK. Deeter JB. J. Org. Chem.  1987,  52:  1036 
  • 4a Szmuszkovicz J. J. Am. Chem. Soc.  1957,  79:  2819 
  • 4b Noland WE. Christensen GM. Sauer GL. Dutton GGS. J. Am. Chem. Soc.  1955,  77:  456 
  • 4c Iqbal Z. Jackson AH. Rao KRN. Tetrahedron Lett.  1988,  29:  2577 
  • 4d Azizi N. Arynasab F. Saidi MR. Org. Biomol. Chem.  2006,  4:  4275 
  • 4e Li D.-P. Guo Y.-C. Ding Y. Xiao W.-J. Chem. Commun.  2006,  799 
  • 4f Silvanus AC. Heffernan SJ. Liptrot DJ. Kociok-Köhn G. Andrews BI. Carbery DR. Org. Lett.  2009,  11:  1175 
  • 5a Kobayashi S. Hachiya I. Takahori T. Araki M. Ishitani H. Tetrahedron Lett.  1992,  33:  6815 
  • 5b Kobayashi S. Synlett  1994,  689 
  • 5c Harrington PE. Kerr MA. Synlett  1996,  1047 
  • 5d Mori Y. Kakumoto K. Manabe K. Kobayashi S. Tetrahedron Lett.  2000,  41:  3107 
  • 5e Yadav JS. Abraham S. Reddy BVS. Sabitha G. Synthesis  2001,  2165 
  • 5f Bandini M. Melchiorre P. Melloni A. Umani-Ronchi A. Synthesis  2002,  1110 
  • 5g Bandini M. Cozzi PG. Giacomini M. Melchiorre P. Selva S. Umani-Ronchi A. J. Org. Chem.  2002,  67:  3700 
  • 5h Alam MM. Varala R. Adapa SR. Tetrahedron Lett.  2003,  44:  5115 
  • 5i Srivastava N. Banik BK. J. Org. Chem.  2003,  68:  2109 
  • 6a Austin JF. MacMillan DWC. J. Am. Chem. Soc.  2002,  124:  1172 
  • 6b Blay G. Fernández I. Pedro JR. Vila C. Org. Lett.  2007,  9:  2601 
  • 6c Bandini M. Fagioli M. Melchiorre P. Melloni A. Umani-Ronchi A. Tetrahedron Lett.  2003,  44:  5843 
  • 6d Jensen KB. Thorhauge J. Hazell RG. Jorgensen KA. Angew. Chem. Int. Ed.  2001,  40:  160 
  • 6e Scettri A. Villano R. Acocella MR. Molecules  2009,  14:  3030 
  • 7a Bartoli G. Bartolacci M. Bosco M. Foglia G. Giuliani A. Marcantoni E. Sambri L. Torregiani E.
    J. Org. Chem.  2003,  68:  4594 
  • 7b Zhan Z.-P. Yang R.-F. Lang K. Tetrahedron Lett.  2005,  46:  3859 
  • 7c Yadav JS. Reddy BVS. Baishya G. Reddy KV. Narsaiah AV. Tetrahedron  2005,  61:  9541 
  • 7d Huang ZH. Zou JP. Jiang WQ. Tetrahedron Lett.  2006,  47:  7965 
  • 7e Kumar V. Kaur S. Kumar S. Tetrahedron Lett.  2006,  47:  7001 
  • 7f Ko S. Lin C. Tu Z. Wang YF. Wang CC. Yao CF. Tetrahedron Lett.  2006,  47:  487 
  • 7g Firouzabadi H. Iranpoor N. Nowrouzi F. Chem. Commun.  2005,  789 
  • 8a Chakravarti R. Kalita P. Selvan ST. Oveisi H. Balasubramanian VV. Kantam ML. Vinu A. Green Chem.  2010,  12:  49 
  • 8b Shobha D. Chari MA. Mano A. Selvan ST. Mukkanti K. Vinu A. Tetrahedron  2009,  65:  10608 
  • 8c Vinu A. Kalita P. Balasubramanian VV. Oveisi H. Selvan ST. Mano A. Chari MA. Reddy BVS. Tetrahedron Lett.  2009,  50:  7132 
  • 9a Chakravarti R. Oveisi H. Kalita P. Pal RR. Halligudi SB. Kantam ML. Vinu A. Micropor. Mesopor. Mater.  2009,  123:  338 
  • 9b Balasubramanian VV. Srinivasu P. Anand C. Pal RR. Ariga K. Velmathi S. Alam S. Vinu A. Micropor. Mesopor. Mater.  2008,  114:  303 
  • 9c Shobha D. Chari MA. Selvan ST. Oveisi H. Mano A. Mukkanti K. Vinu A. Micropor. Mesopor. Mater.  2010,  129:  112 
  • 9d Chari MA. Karthikeyan G. Pandurangan A. Naidu TS. Sathyaseelan B. Zaidi SMJ. Vinu A. Tetrahedron Lett.  2010,  51:  2629 
10

General Procedure. A mixture of activated olefin (1.0 mmol), indole or pyrrole (1.0 mmol) and AlKIT-5 (100 mg) in DCE (5 mL) was stirred at reflux temperature for the appropriate time (Table  [¹] ). After completion of the reaction, as monitored by TLC, the reaction mixture was diluted with EtOAc (20 mL) and the catalyst was separated by filtration. The organic layer was concentrated under reduced pressure and the crude product was purified by silica gel column chromatography using EtOAc-n-hexane (1:9) as eluent to afford the pure 3-alkylindole or 2-alkylpyrrole. The spectral data are in full agreement with the data reported in the literature.5 Spectral data for the selected products: 2-Phenyl-3-indolyl-1-nitroethane(3g): ¹H NMR (300 MHz, CDCl3):
δ = 4.91-5.12 (m, 2 H), 5.22 (t, J = 7.0 Hz, 1 H), 7.01 (d, J = 2.2 Hz, 1 H), 7.07-7.37 (m, 8 H), 7.47 (d, 1 H, J = 8.0 Hz, 1 H), 8.06 (br s, 1 H, NH). ¹³C NMR (75 MHz, CDCl3): δ = 40.9, 78.4, 110.6, 118.7, 120.2, 121.9, 123.0, 126.3, 127.9, 128.2, 129.1, 135.8, 140.2. EIMS: m/z (%) = 266 (100) [M+]. 2-Phenyl-2-pyrrolyl-1-nitroethane (3m): ¹H NMR (300 MHz, CDCl3): δ = 4.76 (dd, J = 11.6, 7.4 Hz, 1 H), 4.86 (dd, J = 7.4, 7.1 Hz, 1 H), 4.96 (dd, J = 11.6, 7.1 Hz, 1 H), 6.03-6.05 (m, 1 H), 6.14 (dd, J = 6.0, 2.7 Hz, 1 H), 6.40 (dd, J = 4.0, 2.5 Hz, 1 H), 7.20-7.31 (m, 5 H), 7.85 (s, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 137.9, 129.2, 128.9, 128.0, 127.9, 118.2, 108.6, 105.8, 79.2, 42.9. EIMS: m/z (%) = 216 (30) [M+], 169 (100).