Synlett 2010(14): 2197-2201  
DOI: 10.1055/s-0030-1258530
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Formal [3+2]-Cycloaddition-Based Approach Using Ethoxymethylene Malonate Derivatives: Novel and Expedient Access to Functionalized N-Acyliminium Precursors

Moussa Sabera, Sébastien Comesse*a, Vincent Dalla*a, Adam Daïch*a, Morgane Sanselmeb, Pierre Netchitaïloa
a Laboratoire de Chimie, URCOM, EA 3221, CNRS-INC3M FR3038, UFR des Sciences et Techniques, Université du Havre, BP: 540, 25 Rue Philipe Lebon, 76058 Le Havre Cedex, France
Fax: +33(02)32744391; e-Mail: sebastien.comesse@univ-lehavre.fr; e-Mail: vincent.dalla@univ-lehavre.fr; e-Mail: adam.daich@univ-lehavre.fr;
b UPRES-EA 3233, IRCOF, Université de Rouen, 1 Rue Tesnière, 76821 Mont-Saint-Aignan Cedex, France
Further Information

Publication History

Received 30 May 2010
Publication Date:
27 July 2010 (online)

Abstract

Combination of a base, ethoxymethylene malonates, and α-bromoacetamides was used to reach structurally diverse α-alkoxy-γ-lactams via a direct aza-MIRC sequence in excellent yields. Subsequent acidic treatment allowed the formed pyrrolo [2,1-a]isoquinoline alkaloid core to be isolated in high yield.

    References and Notes

  • 1 For a review concerning the use of alkoxymethylene-malonates in organic synthesis, see: Milata V. Aldrichimica Acta  2001,  34:  20 ; and the references cited therein
  • 2 For a recent example in the synthesis of bioactive compounds, see: Hua B. Bernotas R. Unwalla R. Collini M. Quinet E. Feingold I. Goos-Nilsson A. Wilhelmsson A. Nambi P. Evans M. Wrobel J. Bioorg. Med. Chem. Lett.  2010,  20:  689 
  • 3 Moffett RB. J. Heterocycl. Chem.  1980,  17:  341 
  • 4 Gómez C. Manzano T. Navarro P. Heterocycles  1980,  14:  769 
  • 5 Tamura Y. Miki Y. Sumida Y. Ikeda M. J. Chem. Soc., Perkin Trans. 1  1973,  2580 
  • 6 Desimoni G. Righetti PP. Selva E. Tacconi G. Riganti V. Specchiarello M. Tetrahedron  1977,  33:  2829 
  • 7 Whitehead CW. J. Am. Chem. Soc.  1952,  74:  4267 
  • 8 Katagiri N. Watanabe N. Kaneko C. Chem. Pharm. Bull.  1990,  38:  69 
  • 9 Ali SA. Wazeer MIM. J. Chem. Soc., Perkin Trans. 2  1990,  1035 
  • 10a Ferrié L. Bouyssi D. Balme G. Org. Lett.  2005,  7:  3143 
  • 10b Garçon S. Vassiliou S. Cavicchioli M. Hartmann B. Monteiro N. Balme G. J. Org. Chem.  2001,  66:  4069 
  • For authoritative reviews in this field, see:
  • 11a Maryanoff BE. Zhang HC. Cohen JH. Turchi IJ. Maryanoff CA. Chem. Rev.  2004,  104:  1431 
  • 11b Speckamp WN. Moolenaar MJ. Tetrahedron  2000,  56:  3817 
  • 12 Leonard NM. Woerpel KA. J. Org. Chem.  2009,  74:  6915 ; and references cited therein
  • For representative and recent papers on heterocyclization, see:
  • 13a Pesquet A. Daïch A. Decroix B. Van Hijfte L. Org. Biomol. Chem.  2005,  3:  3937 
  • 13b Hamid A. Oulyadi H. Daïch A. Tetrahedron  2006,  62:  6398 
  • 13c Oukli N. Comesse S. Chafi N. Oulyadi H. Daïch A. Tetrahedron Lett.  2009,  50:  1459 
  • For catalytic α-amidoalkylation process, see:
  • 13d Ben Othman R. Bousquet T. Othman M. Dalla V. Org. Lett.  2005,  7:  3535 
  • 13e Pin F. Comesse S. Garrigues B. Marchalín Š. Daïch A. J. Org. Chem.  2007,  72:  1181 
  • 13f Ben Othman R. Affani R. Tranchant MJ. Antoniotti S. Duñach E. Dalla V. Angew. Chem. Int. Ed.  2010,  49:  776 
  • 14a Allous I. Comesse S. Daïch A. Lett. Org. Chem.  2008,  3:  73 
  • 14b Comesse S. Sanselme M. Daïch A. J. Org. Chem.  2008,  73:  5566 
  • 14c Pin F. Comesse S. Sanselme M. Daïch A. J. Org. Chem.  2008,  73:  1975 
  • 18 Zhang Q. Tu G. Zhao Y. Cheng T. Tetrahedron  2002,  58:  6795 
  • For recent examples, see:
  • 19a Chiou W.-H. Lin G.-H. Hsu C.-C. Chaterpaul SJ. Ojima I. Org. Lett.  2009,  11:  2659 
  • 19b Evanno L. Ormala J. Pihko PM. Chem. Eur. J.  2009,  15:  12963 
  • 19c Coldham I. Jana S. Watson L. Martin NG. Org. Biomol. Chem.  2009,  7:  1674 ; and the references cited therein
15

Typical Procedure for the Preparation of 9a-j
The required alkoxymethylene derivative 1a-d (1.0 mmol) and N-alkyl-α-bromoacetamide (8a-e, 1.1 mmol) were dissolved in freshly distilled THF (10 mL) at 0 ˚C. NaH (48 mg, 60% suspension in mineral oil, 1.2 mmol) was then added in small portions, and the mixture was stirred for 3 h. The reaction was carefully quenched by addition of a sat. aq NH4Cl solution (10 mL). The aqueous layer was extracted with EtOAc (3 × 10 mL), the organic layers were combined, dried over MgSO4, and evaporated. The residue was then chromatographed on silica gel and provided the desired
α-alkoxy-γ-lactams 9a-j.
Physical Data for 9j
This product was isolated as colorless oil; yield 96% (EtOAc-cyclohexane, 30:70). IR (KBr): 3419, 1965 cm. ¹H NMR (300 MHz, CDCl3): δ = 1.15 (t, J = 7.0 Hz, 3 H), 1.22-1.23 (m, 6 H), 2.61 (d, J = 17.7 Hz, 1 H), 2.82 (m, 2 H), 3.19-3.29 (m, 1 H), 3.42 (d, J = 17.7 Hz, 1 H), 3.64 (q, J = 7.0 Hz, 2 H), 3.75-3.81 (m, 1 H), 3.84 (s, 3 H), 3.86 (s, 3 H), 4.10-4.32 (m, 4 H), 5.42 (s, 1 H), 6.73-6.81 (m, 3 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 14.1, 14.2, 15.5, 33.8, 36.5, 42.8, 56.0, 56.1, 59.9, 62.4, 62.5, 67.3, 91.7, 111.5, 112.2, 120.7, 131.5, 147.9, 149.2, 166.7, 169.3, 171.4 ppm.

16

Full crystallographic data have been deposited at the Cambridge Crystallographic Data Centre; CCDC reference number 777319 for product 9h. Copies of the data can be obtained free of charge at the following address:
http://www.ccdc.cam.ac.uk.

17

Optimized Procedure for the Preparation of Compounds 9a-i
Starting from ethoxymethylene malononitrile (1d, 270 mg, 2.2 mmol) and N-alkyl-α-bromoacetamide (8c, 1 mmol) were dissolved in freshly distilled MeCN (10 mL). K2CO3 (166 mg, 1.2 mmol) was then added, and the mixture was stirred for 2 h under reflux. The reaction was filtered through a small pad of Celite 545 using CH2Cl2, and the organic layer was evaporated. The residue was then purified by chroma-
tography on silica gel column and provided the desired α-alkoxy-γ-lactam.
Physical Data for Compound 9i
This product was isolated as colorless oil; yield 89% (EtOAc-cyclohexane, 20:80). IR (KBr): 2982, 2257, 1723 cm. ¹H NMR (300 MHz, CDCl3): δ = 1.14 (t, J = 6.9 Hz, 3 H), 3.02 (d, J = 16.8 Hz, 1 H), 3.17 (d, J = 16.8 Hz, 1 H), 3.49 (dq, J = 15.2, 7.0 Hz, 1 H), 3.74 (dq, J = 15.2, 7.0 Hz, 1 H), 3.94 (d, J = 14.9 Hz, 1 H), 4.82 (s, 1 H), 4.94 (d, J = 14.9 Hz, 1 H), 7.12-7.15 (m, 2 H), 7.21-7.29 (m, 3 H) ppm.
¹³C NMR (75 MHz, CDCl3): δ = 14.8, 35.0, 38.7, 44.8, 67.8, 90.4, 111.7, 113.4, 128.2, 128.6, 129.2, 134.0, 167.0 ppm.

20

Synthesis of Diethyl 8,9-Dimethoxy-3-oxo-2,3,5,6-tetrahydropyrrolo[2,1- a ]isoquinoline-1,1 (10 bH )-dicarboxylate (10)
TFA (0.23 mL, 3 mmol) was added dropwise at r.t. to a solution of α-alkoxy-γ-lactam 9j (438 mg, 1 mmol) in freshly distilled MeCN (10 mL). The mixture was refluxing overnight, cooled to 0 ˚C and then carefully hydrolyzed with a sat. solution of NaHCO3 (10 mL). The aqueous layer was extracted with EtOAc (3 × 10 mL), the organic layers were combined, dried over MgSO4, and evaporated. The residue was purified by chromatography on silica gel column to provide 10.
Physical Data for Compound 10
This product was isolated as colorless crystals; mp 157-159 ˚C (recrystallized from Et2O); yield 87% (EtOAc-cyclohexane, 30:70). IR (KBr): 1728, 1691 cm. ¹H NMR (300 MHz, CDCl3): δ = 0.84 (t, J = 7.0 Hz, 3 H), 1.36 (t, J = 7.0 Hz, 3 H), 2.60 (d, J = 16.4 Hz, 1 H), 2.79-3.03 (m, 3 H), 3.05 (d, J = 16.4 Hz, 1 H), 3.62-3.84 (m, 2 H), 3.84 (s, 6 H), 4.29-4.50 (m, 3 H), 5.54 (s, 1 H), 6.57 (s, 1 H), 7.30 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 13.7, 14.3, 28.6, 37.8, 40.1, 60.9, 62.0, 26.6, 110.8, 110.5, 123.6, 127.9, 147.7, 148.4, 168.9, 169.8, 170.7 ppm.