Synlett 2010(13): 1951-1954  
DOI: 10.1055/s-0030-1258132
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Solid-Phase Synthesis of Phosphonylated Peptides

Mary MacDonald*, Marion Lanier, John Cashman
Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
Fax: +1(858)4589311; e-Mail: mmacdonald9@gmail.com;
Further Information

Publication History

Received 5 March 2010
Publication Date:
09 July 2010 (online)

Abstract

We report the solid-phase syntheses of two series of phosphonylated peptides using Fmoc-protected amino acids. The peptides corresponded to regions containing phosphonylated Ser195 in the active site of butyrylcholinesterase and Tyr411 of ­human serum albumin. The phosphonylated Fmoc-protected amino acids were used in solid-phase peptide synthesis to prepare the peptides. Fmoc-serine and Fmoc-tyrosine with benzyl ester protection were treated with alkyl methylphosphonic monochloridates to phosphonylate the side-chain hydroxy groups. The phosphonylated peptides were designed to mimic the protein region after exposure of the proteins to organophosphorus agents.

    References

  • 1a Coupland R. Leins KR. Science  2005,  308:  1841 
  • 1b Rosenstock R. Keifer M. Daniell WE. McConnell R. Claypoole K. Lancet  1991,  338:  223 
  • 2a Duysen EG. Li B. Xie W. Schopfer LM. Anderson RS. Broomfield CA. Lockridge O.
    J. Pharmacol. Exp. Ther.  2001,  299:  528 
  • 2b Tuin AW. Mol MAE. van den Berg RM. Fidder A. van der Marel GA. Overkleeft HS. Noort D. Chem. Res. Toxicol.  2009,  22:  683 
  • 3 Berijani S. Assadi Y. Anbia M. Hosseini M.-RM. Aghaee E. J. Chromatogr. A.  2006,  1123:  1 
  • 4 Ashley JA. Lin C.-H. Wirsching P. Janda KD. Angew. Chem. Int. Ed.  1999,  38:  1793 
  • 5a Li B. Schopfer LM. Hinrichs SH. Masson P. Lockridge O. Anal. Biochem.  2007,  361:  263 
  • 5b Lockridge O. Masson P. Neurotoxicology  2000,  21:  113 
  • 6 Ding S.-J. Carr J. Carlson JE. Tong L. Xue W. Li Y. Schopfer LM. Li B. Nachon F. Asojo O. Thompson CM. Hinrichs SH. Masson P. Lockridge O. Chem. Res. Toxicol.  2008,  21:  1787 
  • 7a Attard TJ. O’Brien-Simpson N. Reynolds EC.
    Int. J. Pept. Res. Ther.  2007,  13:  447 
  • 7b McMurray JS. Coleman DR. Wand W. Campbell ML. Biopolymers  2001,  60:  3 
  • 8a Harris PWR. Williams GM. Shepherd P. Brimble MA. Int. J. Pept. Res. Ther.  2008,  14:  387 
  • 8b Hoffmann R. Hoffmann T. Tholey A. Schulte AC. J. Peptide Res.  1997,  49:  163 
  • 8c Hoffmann R. Tholey A. Hoffmann T. Kalbitzer HR. Int. J. Peptide Protein Res.  1996,  47:  245 
  • 8d Kupihár Z. Kele Z. Tóth GK. Org. Lett.  2001,  3:  1033 
  • 8e Wijkmans JCHM. Meeuwenoord NJ. Bloemhoff W. van der Marel GA. van Boom JH. Tetrahedron  1996,  52:  2103 
  • 9a Amitai G. Adani R. Yacov G. Yishay S. Teitlboim S. Tveria L. Limanovich O. Kushnir M. Meshulam H. Toxicology  2007,  233:  187 
  • 9b Briseño-Roa L. Hill J. Notman S. Sellers D. Smith AP. Timperley CM. Wetherell J. Williams NH. Williams GR. Fersht AR. Griffiths AD. J. Med. Chem.  2006,  49:  246 
  • 10 Huang Y. Dey S. Zhang X. Sönnischen F. Garner P. J. Am. Chem. Soc.  2004,  126:  4626 
  • 11 Williams NH. Harrison JM. Read RW. Black RM. Arch. Toxicol.  2007,  81:  627 
  • 12 Bennett KD. Stensballe A. Podtelejnikov AV. Moniatte M. Jensen ON. J. Mass Spectrom.  2002,  37:  179 
  • 13 Attard TJ. O’Brien-Simpson NM. Reynolds EC. Int. J. Pept. Res. Ther.  2009,  15:  69