Synlett 2010(12): 1797-1802  
DOI: 10.1055/s-0030-1258121
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Epoxides to α-Mercapto-γ-lactones via Ionic Liquid Promoted Mercaptoacetylative Ring-Opening-Ring-Closing Cascade

Rajesh Patel, Vishnu P. Srivastava, Lal Dhar S. Yadav*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India
Fax: +91(532)2460533; e-Mail: ldsyadav@hotmail.com;
Further Information

Publication History

Received 28 April 2010
Publication Date:
30 June 2010 (online)

Abstract

Task-specific ionic liquid promoted {[Bmim]OH} one-pot synthesis of α-mercapto-γ-lactones is reported. The present protocol involves regioselective epoxide ring opening and intramolecular translactonisation cascade. A variety of epoxides undergo this ring-opening-ring-closing cascade with 2-methyl-2-phenyl-1,3-­oxathiolan-5-one to afford α-mercapto-γ-lactones diastereoselectively in good to excellent yields. After isolation of the product, the ionic liquid [Bmim]OH could be easily recovered and reused without any loss of efficiency.

    References and Notes

  • 1a Koch SSC. Chamberlin AR. In Studies in Natural Products Chemistry   Vol. 16:  . Elsevier; Amsterdam: 1995.  p.687-725  
  • 1b Friedrichsen W. In Comprehensive Heterocyclic Chemistry II   Vol. 2:  Bird CW. Pergamon Press; Oxford: 1996.  p.351 
  • 1c Rao YS. Chem. Rev.  1976,  76:  625 
  • 1d Haffmann HMR. Rabe J. Angew. Chem., Int. Ed. Engl.  1985,  24:  94 
  • 1e Mulzer J. Salimi N. Hartl H. Tetrahedron: Asymmetry  1993,  4:  457 
  • 1f Schmitz WD. Messerschmidt NB. Romo D. J. Org. Chem.  1998,  63:  2058 
  • 1g Maier MS. Marimon DIG. Stortz C.-A. Alder MJ. J. Nat. Prod.  1999,  62:  1565 
  • 1h Hislop J.-A. Hunt MB. Fielder S. Rowan DD. J. Agric. Food Chem.  2004,  52:  7075 
  • 1i Frediani P. Rosi L. Frediani M. Bartolucci C. Bambagiotti-Alberti M. J. Agric. Food Chem.  2007,  55:  3877 
  • 1j Schlutt B. Moran N. Schieberle P. Hofmann T. J. Agric. Food Chem.  2007,  55:  9634 
  • 1k Pertino MW. Theoduloz C. Rodriguez JA. Yanez T. Lazo V. Schmeda-Hirschmann G. J. Nat. Prod.  2010,  73:  639 
  • 2 Lambert JD. Rice JE. Hong J. Hou Z. Yang CS. Bioorg. Med. Chem. Lett.  2005,  15:  873 
  • 3a Harchen C. Bruchner R. Angew. Chem. Int. Ed.  1997,  36:  2750 
  • 3b Drioli S. Felluga F. Forzato C. Nitti P. Pitacco G. Valentin E. J. Org. Chem.  1998,  63:  2385 
  • 3c de March P. Figueredo M. Font J. Raya J. Org. Lett.  2000,  2:  163 
  • 3d Delhaye L. Merschaert A. Diker K. Houpis IN. Synthesis  2006,  1437 
  • 4a Gutierrez JLG. Jimenez-Cruz F. Espinosa NR. Tetrahedron Lett.  2005,  46:  803 
  • 4b Burstein C. Tschan S. Xie X. Glorius F. Synthesis  2006,  2418 
  • 4c Tiecco M. Testaferri L. Temperini A. Terlizzi R. Bagnoli L. Marini F. Santi C. Synlett  2006,  587 
  • 4d Vitale M. Prestat G. Lopes D. Madec D. Poli G. Synlett  2006,  2231 
  • 4e Cho CS. Shim HS. Tetrahedron Lett.  2006,  47:  3835 
  • 4f Li Z. Gao Y. Jiao Z. Wu N. Wang DZ. Yang Z. Org. Lett.  2008,  10:  5163 
  • 4g Park HS. Kwon DW. Lee K. Kim YH. Tetrahedron Lett.  2008,  49:  1616 
  • 4h Antoniotti S. Dunach E. Tetrahedron Lett.  2009,  50:  2536 
  • 4i Gooßen LJ. Ohlmann DM. Dierker M. Green Chem.  2010,  12:  197 
  • 4j Dias LC. de Castro IBD. Steil LJ. Augusto T. Tetrahedron Lett.  2006,  47:  213 
  • 4k Olejniczak T. Mironowicz A. Wawrzenczyk C. Bioorg. Chem.  2003,  31:  199 
  • 5a Tietze LF. Beifuss U. Angew. Chem., Int. Ed. Engl.  1993,  32:  131 
  • 5b Enders D. Grndal C. Huttl MRM. Angew. Chem. Int. Ed.  2007,  46:  1570 
  • 5c Nicolaou KC. Chen JS. Chem. Soc. Rev.  2009,  38:  2993 
  • 5d Morten CJ. Byers JA. Van Dyke AR. Vilotijevic I. Jamison TF. Chem. Soc. Rev.  2009,  38:  3175 
  • 6a Domino Reactions in Organic Synthesis   Tietze LF. Brasche G. Gericke KM. Wiley-VCH; Weinheim: 2006. 
  • 6b Fustero S. Jimenez D. Sanchez-Rosello M. del Pozo C. J. Am. Chem. Soc.  2007,  129:  6700 
  • 6c Bi H.-P. Liu X.-Y. Gou F.-R. Guo L.-N. Duan X.-H. Shu X.-Z. Liang Y.-M. Angew. Chem. Int. Ed.  2007,  46:  7068 
  • 6d Rolfe A. Young K. Hanson PR. Eur. J. Org. Chem.  2008,  31:  5254 
  • 7a Kozytska MV. Dudley GB. Chem. Commun.  2005,  3047 
  • 7b Bontemps S. Gornitzka H. Bouhadir G. Miqueu K. Bourissou D. Angew. Chem. Int. Ed.  2006,  45:  1611 
  • 7c Bontemps S. Bouhadir G. Miqueu K. Bourissou D. J. Am. Chem. Soc.  2006,  128:  12056 
  • 7d Tejedor D. Mendez-Abt G. Gonzalez-Platas J. Ramirez MA. Garca-Tellado F. Chem. Commun.  2009,  2368 
  • 8a Nakamura H. Shim J.-G. Yamamoto Y. J. Am. Chem. Soc.  1997,  119:  8113 
  • 8b Nakamura H. Aoyagi K. Shim J.-G. Yamamoto Y. J. Am. Chem. Soc.  2001,  123:  372 
  • 8c Hili R. Yudin AK. Angew. Chem. Int. Ed.  2008,  47:  4188 
  • 8d Baktharaman S. Hili R. Yudin AK. Aldrichimica Acta  2008,  41:  109 
  • 8e Kimura M. Tamaki T. Nakata M. Tohyama K. Tamaru Y. Angew. Chem. Int. Ed.  2008,  120:  5887 
  • 8f Hili R. Yudin AK. J. Am. Chem. Soc.  2009,  131:  16404 
  • 9a Corey EJ. Russey WE. Ortiz de Montellano PR.
    J. Am. Chem. Soc.  1966,  88:  4750 
  • 9b van Tamelen EE. Willett JD. Clayton RB. Lord KE. J. Am. Chem. Soc.  1966,  88:  4752 
  • 9c Neighbors JD. Beutler JA. Wiemer DF. J. Org. Chem.  2005,  70:  925 
  • 9d Vilotijevic I. Jamison TF. Angew. Chem. Int. Ed.  2009,  48:  5250 
  • 9e Topczewski JJ. Callahan MP. Neighbors JD. Wiemer DF. J. Am. Chem. Soc.  2009,  131:  14630 
  • 10a Samuel S.-MC. Gordon WK. J. Chem. Soc., Perkin Trans. 1  1991,  3225 
  • 10b Ravelo JL. Radriguez CM. Martin VS. J. Organomet. Chem.  2006,  691:  5326 
  • 11a Chowdhury S. Mohan RS. Scott JL. Tetrahedron  2007,  63:  2363 
  • 11b Martins MAP. Frizzo CP. Moreira DN. Zanatta N. Bonacorso HG. Chem. Rev.  2008,  108:  2015 
  • 11c Prechtl MHG. Scholten JD. Nuto BAD. Dupont J. Curr. Org. Chem.  2009,  13:  1705 
  • 11d Sureshkumar M. Lee C.-K. J. Mol. Catal. B: Enzym.  2009,  60:  1 
  • 11e Olivier-Bourbigou H. Magna L. Morvan D. Appl. Catal., A  2010,  373:  1 
  • 11f Giernoth R. Angew. Chem. Int. Ed.  2010,  49:  2834 
  • 12a Ionic Liquids in Synthesis   Wasserscheid P. Welton T. Wiley-VCH; Weinheim: 2008. 
  • 12b Calo V. Nacci A. Monopoli A. Cotugno P. Angew. Chem. Int. Ed.  2009,  48:  6101 
  • 12c Gong K. Wang H.-L. Luo J. Liu Z.-L. J. Heterocycl. Chem.  2009,  46:  1145 
  • 12d Yavari I. Kowsari E. Mol. Diversity  2009,  13:  519 
  • 12e Yadav LDS. . Srivastava VP. Tetrahedron Lett.  2010,  51:  739 
  • 13a Yadav LDS. Patel R. Rai VK. Srivastava VP. Tetrahedron Lett.  2007,  48:  7793 
  • 13b Yadav LDS. Patel R. Srivastava VP. Synlett  2008,  583 
  • 13c Yadav LDS. Singh S. Rai VK. Tetrahedron Lett.  2009,  50:  2208 
  • 13d Yadav LDS. Singh S. Rai VK. Green Chem.  2009,  11:  878 
  • 13e Yadav LDS. Kapoor R. . Synlett  2009,  1055 
  • 13f Yadav LDS. Rai VK. Singh S. Singh P. Tetrahedron Lett.  2010,  51:  1662 
  • 14 Yadav LDS. Yadav S. Rai VK. Tetrahedron  2005,  61:  10013 
  • 17 Brace NO. J. Fluorine Chem.  2003,  123:  237 
15

General Procedure for the Synthesis of α-Mercapto-γ-lactones 4
To a stirred solution of 2-methyl-2-phenyl-1,3-oxathiolan-5-one (2, 1 mmol) in [Bmim]OH-H2O (0.5-1 mL, 4:1), epoxide 1 (1 mmol) was added dropwise and stirred at r.t. for 30 min, then the reaction mixture was stirred at 50 ˚C for 6-15 h (Table  [¹] ). After completion of reaction (monitored by TLC), the reaction mixture was cooled to r.t., diluted with H2O (5 mL), and extracted with EtOAc (3 × 5 mL), dried over anhyd Na2SO4, filtered, and evaporated to dryness.
A mixture of the crude product 4 and acetophenone thus obtained was subjected to silica gel column chromatography using EtOAc-n-hexane as eluent to afford an analytically pure sample of 4 and acetophenone, which was recycled to 2.¹4 After isolation of the product, the remaining aqueous layer containing the ionic liquid was washed with Et2O (2 × 5 mL) to remove any organic impurity, dried under vacuum at 90 ˚C to afford [Bmim]OH, which was used in subsequent runs without further purification.
Physical Data of Representative CompoundsCompound 4a ( cis / trans = 60:40) cis: IR (film): νmax = 2995, 2876, 2554, 1765, 1607, 1583, 1455 cm. ¹H NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.25 (1 H, m), 2.39 (1 H, ddd, J = 13.2, 6.8, 6.7 Hz), 3.85 (1 H, dd, J = 7.7, 6.7 Hz), 5.28 (1 H, dd, J = 6.9, 6.8 Hz), 7.21-7.32 (m, 5 Harom). ¹³C NMR (100 MHz, CDCl3-TMS): δ = 41.1, 46.2, 80.1, 127.1, 128.8, 129.1, 140.1, 178.4. MS (EI): m/z = 194 [M+]. Anal. Calcd for C10H10O2S: C, 61.83; H, 5.19. Found: C, 62.2; H, 5.02.
trans: IR (film): νmax = 2993, 2876, 2558, 1767, 1609, 1582, 1453 cm. ¹H NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.20 (1 H, m), 2.46 (1 H, ddd, J = 13.2, 6.8, 6.9 Hz), 3.88 (1 H, dd, J = 7.4, 6.9 Hz), 5.05 (1 H, dd, J = 10.3, 6.8 Hz), 7.23-7.36 (m, 5Harom).
Compound 4c ( cis / trans = 67:33)
cis: IR (film): νmax = 2998, 2875, 2554, 1768, 1605, 1585, 1456 cm. ¹H NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.25 (1 H, m), 2.39 (1 H, ddd, J = 13.2, 6.8, 6.7 Hz), 3.83 (1 H, dd, J = 7.7, 6.7 Hz), 5.29 (1 H, dd, J = 6.9, 6.8 Hz), 7.21-7.34 (m, 2 Harom,), 7.58-7.61 (m, 2 Harom). ¹³C NMR (100 MHz, CDCl3-TMS): δ = 41.6, 46.9, 81.1, 129.6, 130.2, 132.3, 143.5, 178.5. MS (EI): m/z = 228 [M+], 230 [M + 2+]. Anal. Calcd for C10H9ClO2S: C, 52.52; H, 3.97. Found: C, 52.15; H, 4.29.
trans: IR (film): νmax = 3001, 2876, 2552, 1770, 1609, 1580, 1457 cm. ¹H NMR (400 MHz, CDCl3-D2O-TMS): δ = 2.20 (1 H, m), 2.46 (1 H, ddd, J = 13.2, 6.8, 6.9 Hz), 3.86 (1 H, dd, J = 7.4, 6.9 Hz), 5.07 (1 H, dd, J = 10.3, 6.8 Hz), 7.23-7.36 (m, 2 Harom), 7.57-7.62 (m, 2 Harom).

16

Isolation of 3a and 3c and their Conversion into the Corresponding α-Mercapto-γ-lactones 4a and 4c
The procedure followed was the same as described above for the synthesis of 4 except that the stirring time in this case was only 25-30 min at r.t. Purified by silica gel chromatography using EtOAc-n-hexane as eluent to afford an analytically pure sample of 3a and 3c. Finally, the intermediate alcohols 3a and 3c (1 mmol) were quantitatively converted into the corresponding γ-lactones 4a and 4b by stirring at 50 ˚C in [Bmim]OH-H2O (4:1) for 6.5 h.
Physical Data of Intermediate Alcohols 3a and 3cCompound 3a (Diastereomeric Mixture = 60:40)
Major: IR (film): νmax = 3435, 2965, 2878, 1775, 1605, 1581, 1456 cm. ¹H NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.18 (3 H, s), 2.13-2.17 (2 H, m), 3.99 (1 H, dd, J = 12.0, 7.8 Hz), 4.91 (1 H, dd, J = 7.6, 5.7 Hz), 7.21-7.36 (m, 10Harom). ¹³C NMR (100 MHz; CDCl3-TMS): δ = 20.8, 37.2, 44.7, 77.2, 98.7, 127.1, 127.8, 128.4, 128.8, 129.1, 129.5, 139.8, 141.1, 177.2. MS (EI): m/z = 314 [M+]. Anal. Calcd for C18H18O3S: C, 68.76; H, 5.77. Found: C, 68.98; H, 5.40.
Minor: ¹H NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.19 (3 H, s), 2.15-2.20 (2 H, m), 3.89 (1 H, t, J = 2.2 Hz), 4.98 (1 H, dd, J = 7.8, 5.7 Hz), 7.21-7.34 (m, 10 Harom).
Compound 3c (Diasteriomeric Mixture = 67:33)
Major: IR (film): νmax = 3440, 2985, 2876, 1772, 1607, 1584, 1457 cm. ¹H NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.21 (3 H, s), 2.16-2.20 (2 H, m), 3.92 (1 H, dd, J = 12.1, 7.8 Hz), 4.95 (1 H, dd, J = 7.5, 5.7 Hz), 7.21-7.52 (m, 7 Harom), 7.70-7.90 (m, 2 Harom). ¹³C NMR (100 MHz, CDCl3-TMS): δ = 21.7, 37.4, 44.9, 77.3, 98.6, 127.7, 128.9, 129.2, 129.8, 130.1, 132.2, 139.7, 142.5, 177.3. MS (EI): m/z = 348 [M+], 350 [M + 2+]. Anal. Calcd for C18H17ClO3S: C, 61.97; H, 4.91. Found: C, 62.20; H, 5.28.
Minor: ¹H NMR (400 MHz, CDCl3-D2O-TMS): δ = 1.19 (3 H, s), 2.17-2.22 (2 H, m), 3.89 (1 H, t, J = 2.3 Hz), 4.98 (1 H, dd, J = 7.8, 5.6 Hz), 7.22-7.54 (m, 7 Harom), 7.72 (m, 2 Harom).