Synthesis of (S)-Rivastigmine

Significance: Rivastigmine (Exelon®) is an acetylcholinesterase inhibitor that is prescribed for the treatment of mild to moderate dementia in patients with Alzheimer’s disease and Parkinson’s disease. The key step in the synthesis depicted is a dynamic kinetic resolution of the benzylic secondary alcohol B involving a lipase (Novozyme 435) coupled with a polymer-bound racemization catalyst (C).

Comment: The polymer-bound racemization catalyst C was prepared by heating a polymer-bound benzoyl chloride with [Ph₄][η⁵-C₅CO]Ru(CO)₃ in toluene for one day. The catalyst can be recycled several times. The enzymatic resolution was performed on a 1 mmol scale. For an alternative chemoenzymatic synthesis of rivastigmine, see: J. Mangas-Sánchez et al. *J. Org. Chem.* 2009, 74, 5304.

Procedure:
1. Et(Me)NCOCl (2.0 equiv) NaH (2.0 equiv)
 CH₂Cl₂, r.t., 4 h

2. NaBH₄ (1.0 equiv)
 MeOH, 0 °C
 85%

Novozyme 435 (30 mg/mmol)
3. NaBH₄ (1.0 equiv)
 MeOH, 0 °C
 96% (er > 99:1)

K₂CO₃ (1.0 equiv)
4. isopropenyl acetate (1.5 equiv)
 K₂CO₃ (1.0 equiv)
 PhMe (0.3 M), r.t., 1 d
 96%

C (4 mol% Ru)
5. Novozyme 435 (30 mg/mmol)
 PhMe (0.3 M), r.t., 1 d
 96%

K₂CO₃ (1.0 equiv)
6. MeOH-H₂O, r.t., 2 h
 92%

SYNFACTS Contributors: Philip Kocienski

Synfacts 2010, 8, 0853-0853 Published online: 22.07.2010

DOI: 10.1055/s-0030-1257746; **Reg-No.:** K04210SF