Endoscopic submucosal dissection (ESD) is a time-consuming and technically demanding technique [1–3]. The main difficulty is the lack of triangulated countertraction with current endoscopes [4]. To improve speed and efficacy of the procedure, an intriguing pulley method using dental floss together with endoscopic clips has recently been described [5]. However, current clip technology is unlikely to provide a robust and dependable anchor for this “pulley” technique.

To create a more stable pulley mechanism, we used a novel endoscopic suturing device (Overstitch, Apollo-Endosurgery, Austin, Texas, USA; Fig. 1). The device consists of a suture with an anchor/needle threaded through one endoscopic working channel. The anchor can be linked to a curved suturing-arm manipulated via a system-handle on the proximal end of a dual-channel therapeutic gastroscope (Video 1). We believe the use of this system could greatly facilitate ESD by providing endoluminal triangulation and retraction (Fig. 2).

In an anesthetized 45-kg pig, hypothesized gastric lesions (n = 2) were marked by mucosal burns (diameter 3 cm). After lifting the area with saline, a circumferential mucosal incision was performed using a standard needle knife. With the suturing device a suture was first endoluminally anchored at an anterior gastric fold (Fig. 3), distal from the lesion. A second bite was placed through the lateral proximal edge of the specimen and the anchor/needle, serving as a lifting retainer, was released. To generate triangulation, another endoluminal pulley was created (Fig. 4) at the contralateral mucosal edge. Both suture tails were withdrawn through the mouth and separately clamped with a hemostat. An isolated tip needle knife (IT-knife, Olympus, Center Valley, Pennsylvania, USA)
was used for submucosal dissection while alternately pulling on the sutures to lift and retract the specimen (Fig. 5). All suture-pulleys (n = 4) were easily created within 5.3 ± 0.3 min. Subsequent submucosal dissections were successfully performed in 34.0 ± 1.4 min, without perforations (Fig. 6, Video 2).

The use of an endoscopic suturing device could facilitate dissection of large superficial gastrointestinal lesions by enabling endolumenal triangulation.

Endoscopy_UCTN_Code_TTT_1AO_2AG

Competing interests: None

E. Rieder¹, K. I. Makris¹, D. V. Martinec², L. L. Swanström²
¹ Minimally Invasive Surgery Program, Legacy Health, Portland, Oregon, USA
² Gastrointestinal and Minimally Invasive Surgery Division, The Oregon Clinic, Portland, Oregon, USA

References

Bibliography
Endoscopy 2011; 43: E319 – E320
© Georg Thieme Verlag KG Stuttgart · New York · ISSN 0013-726X

Corresponding author
E. Rieder
Minimally Invasive Surgery Program
Legacy Health
1040 NW 22nd Avenue
Suite 560
Portland
97210 OR
USA
erwin.rieder@meduniwien.ac.at