Der Nuklearmediziner 2010; 33(3): 181-186
DOI: 10.1055/s-0030-1254161
Niere und Prostata

© Georg Thieme Verlag KG Stuttgart · New York

Cholin-PET/CT zur Bildgebung des Prostatakarzinoms

Choline-PET/CT for Imaging Prostate CancerB. J. Krause1 , U. Treiber2 , S. Schwarzenböck1 , M. Souvatzoglou1
  • 1Klinik- und Poliklinik für Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München
  • 2Klinik für Urologie, Klinikum rechts der Isar, Technische Universität München
Further Information

Publication History

Publication Date:
10 September 2010 (online)

Zusammenfassung

Die PET- und PET/CT-Diagnostik mit [11C]- und [18F]-markierten Cholinderivaten wird zunehmend zur bildgebenden Diagnostik des Prostatakarzinoms eingesetzt. Die PET/CT mit radioaktiv markierten Cholinderivaten kann zum aktuellen Zeitpunkt für die Diagnose des primären Prostatakarzinoms nicht empfohlen werden. Die Cholin-PET/CT kann aber hilfreiche Informationen bei klinischem Verdacht auf Prostatakarzinom mit wiederholt negativen Biopsien in Vorbereitung auf eine gezielte Re-Biopsie liefern. Zunehmende Evidenz besteht für die Wertigkeit der PET und PET/CT mit radioaktiv markierten Cholinderivaten für das Re-Staging von Patienten mit einem biochemischen Rezidiv nach primärer lokaler Therapie. Erfolgversprechende Ergebnisse sind für diese Patientengruppe publiziert worden. Die Detektionsrate der Cholin-PET/CT zeigt eine lineare Abhängigkeit vom PSA-Serumwert. Für PSA-Serumwerte von kleiner 1 ng/ml können ca. ⅓ der Rezidive nachgewiesen werden. Durch eine Lokalisierung der Rezidiverkrankung bei diesen Patienten werden individualisierte Therapieansätze möglich. Präliminäre Studien zum Einsatz der [11C]Cholin-PET/CT zur Ermittlung des Therapieansprechens unter anti-hormoneller Therapie haben vielversprechende Ergebnisse erbracht. Klinische Multicenterstudien sind notwendig, um den Wert der Cholin-PET/CT für die Rezidivdiagnostik des Prostatakarzinoms weiter zu evaluieren und zu validieren, ebenso wie Leitlinien und Analysen zur Kosteneffizienz.

Abstract

PET and PET/CT using [11C]- and [18F]-labelled choline derivatives are increasingly being used for imaging of prostate cancer. The value of PET and PET/CT with [11C]- and [18F]-labelled choline derivates in biochemical recurrence of prostate cancer has been examined in many studies and demonstrates an increasing importance. Primary prostate cancer can be detected with moderate sensitivity using PET and PET/CT using [11C]- and [18F]-labelled choline derivatives – the differentiation between benign prostatic hyperplasia, prostatitis or high-grade intraepithelial neoplasia (HGPIN) is not always possible. At the present time [11C]choline PET/CT is not recommended in the primary setting but may be utilized in clinically suspected prostate cancer with repeatedly negative prostate biopsies, in preparation of a focused re-biopsy. Promising results have been obtained for the use of PET and PET/CT with [11C]- and [18F]-labelled choline derivates in patients with biochemical recurrence. The detection rate of choline PET and PET/CT for local, regional, and distant recurrence in patients with a biochemical recurrence shows a linear correlation with PSA values at the time of imaging and reaches about 75% in patients with PSA >3 ng/mL. At PSA values below 1 ng/mL, the recurrence can be diagnosed with choline PET/CT in approximately 1/3 of the patients. PET and PET/CT with [11C]- and [18F]choline derivates can be helpful for choosing a therapeutic strategy in the sense of an individualized treatment: since an early diagnosis of recurrence is crucial to the choice of optimal treatment. The localization of the site of recurrence – local recurrence, lymph node metastasis or systemic dissemination – has important influence on the therapy regimen.

Literatur

  • 1 Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism: a target in cancer cells?.  J Cell Biochem. 2003;  90 525-533
  • 2 Ackerstaff E, Pflug BR, Nelson JB. et al . Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells.  Cancer Res. 2001;  61 3599-3603
  • 3 Albrecht S, Buchegger F, Soloviev D. et al . [11C]acetate PET in the early evaluation of prostate cancer recurrence.  Eur J Nucl Med Mol Imaging. 2007;  34 185-196
  • 4 Bott SR. Management of recurrent disease after radical prostatectomy.  Prostate Cancer Prostatic Dis. 2004;  7 211-216
  • 5 Casciani E, Gualdi GF. Prostate cancer: value of magnetic resonance spectroscopy 3D chemical shift imaging.  Abdom Imaging. 2006;  31 490-499
  • 6 Castellucci P, Fuccio C, Nanni C. et al . Influence of trigger PSA and PSA kinetics on [11C]Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy.  J Nucl Med. 2009;  50 1394-1400
  • 7 Chism DB, Hanlon AL, Horwitz EM. et al . A comparison of the single and double factor high-risk models for risk assignment of prostate cancer treated with 3D conformal radiotherapy.  Int J Radiat Oncol Biol Phys. 2004;  59 380-385
  • 8 Cimitan M, Bortolus R, Morassut S. et al . [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients.  Eur J Nucl Med Mol Imaging. 2006;  33 1387-1398
  • 9 Coleman R, DeGrado T, Wang S. et al . 9:30–9:45. Preliminary Evaluation of F-18 Fluorocholine (FCH) as a PET Tumor Imaging Agent.  Clin Positron Imaging. 2000;  3 147
  • 10 Contractor KB, Aboagye EO. Monitoring predominantly cytostatic treatment response with [18F]-FDG PET.  J Nucl Med. 2009;  50 ((Suppl. 1)) 97S-105S
  • 11 Dehdashti F, Picus J, Michalski JM. et al . Positron tomographic assessment of androgen receptors in prostatic carcinoma.  Eur J Nucl Med Mol Imaging. 2005;  32 344-350
  • 12 de Jong IJ, Pruim J, Elsinga PH. et al . Visualization of prostate cancer with [11C]choline positron emission tomography.  Eur Urol. 2002;  42 18-23
  • 13 de Jong IJ, Pruim J, Elsinga PH. et al . Preoperative staging of pelvic lymph nodes in prostate cancer by [11C]choline PET.  J Nucl Med. 2003a;  44 331-335
  • 14 de Jong IJ, Pruim J, Elsinga PH. et al . [11C]choline positron emission tomography for the evaluation after treatment of localized prostate cancer.  Eur Urol. 2003b;  44 32-38 discussion 8–9
  • 15 Farsad M, Schiavina R, Castellucci P. et al . Detection and localization of prostate cancer: correlation of [11C]choline PET/CT with histopathologic step-section analysis.  J Nucl Med. 2005;  46 1642-1649
  • 16 Ferlay J, Autier P, Boniol M. et al . Estimates of the cancer incidence and mortality in Europe in 2006.  Ann Oncol. 2007;  18 581-592
  • 17 Freedland SJ, Presti Jr JC, Amling CL. et al . Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database.  Urology. 2003;  61 736-741
  • 18 Giovacchini G, Picchio M, Coradeschi E. et al . [11C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy.  Eur J Nucl Med Mol Imaging. 2008;  35 1065-1073
  • 19 Han M, Partin AW, Zahurak M. et al . Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer.  J Urol. 2003;  169 517-523
  • 20 Hara T, Bansal A, DeGrado TR. Choline transporter as a novel target for molecular imaging of cancer.  Mol Imaging. 2006;  5 498-509
  • 21 Heinisch M, Dirisamer A, Loidl W. et al . Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA <5 ng/ml?.  Mol Imaging Biol. 2006;  8 43-48
  • 22 Hofer C, Laubenbacher C, Block T. et al . Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy.  Eur Urol. 1999;  36 31-35
  • 23 Husarik DB, Miralbell R, Dubs M. et al . Evaluation of [18F]choline PET/CT for staging and restaging of prostate cancer.  Eur J Nucl Med Mol Imaging. 2008;  35 253-263
  • 24 Katz-Brull R, Degani H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method.  Anticancer Res. 1996;  16 1375-1380
  • 25 Kotzerke J, Prang J, Neumaier B. et al . Experience with carbon-11 choline positron emission tomography in prostate carcinoma.  Eur J Nucl Med. 2000;  27 1415-1419
  • 26 Krause BJ, Souvatzoglou M, Tuncel M. et al . The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer.  Eur J Nucl Med Mol Imaging. 2008;  35 18-23
  • 27 Krause BJ, Souvatzoglou M, Herrmann K. et al . [11C]Choline as pharmacodynamic marker for therapy response assessment in a prostate cancer xenograft model.  Eur J Nucl Med Mol Imaging. 2010;  May 30 [Epub ahead of print]
  • 28 Kurdziel K, Bacharach S, Carrasquillo J. et al . 8:45–9:00. Using PET [18F]-FDG, 11CO, and 15O-water for Monitoring Prostate Cancer During a Phase II Anti-angiogenic Drug Trial with Thalidomide.  Clin Positron Imaging. 2000;  3 144
  • 29 Kwee SA, Coel MN, Lim J. et al . Prostate cancer localization with 18fluorine fluorocholine positron emission tomography.  J Urol. 2005;  173 252-255
  • 30 Kwee SA, Wei H, Sesterhenn I. et al . Localization of primary prostate cancer with dual-phase [18F]fluorocholine PET.  J Nucl Med. 2006;  47 262-269
  • 31 Larson SM, Morris M, Gunther I. et al . Tumor localization of 16beta-[18F]-fluoro-5alpha-dihydrotestosterone versus [18F]-FDG in patients with progressive, metastatic prostate cancer.  J Nucl Med. 2004;  45 366-373
  • 32 Martorana G, Schiavina R, Corti B. et al . [11C]choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy.  J Urol. 2006;  176 954-960 discussion 60
  • 33 Morris MJ, Akhurst T, Osman I. et al . Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer.  Urology. 2002;  59 913-918
  • 34 Nunez R, Macapinlac HA, Yeung HW. et al . Combined [18F]-FDG and [11C]-methionine PET scans in patients with newly progressive metastatic prostate cancer.  J Nucl Med. 2002;  43 46-55
  • 35 Oyama N, Akino H, Suzuki Y. et al . FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation.  Nucl Med Commun. 2001;  22 963-969
  • 36 Picchio M, Messa C, Landoni C. et al . Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography.  J Urol. 2003;  169 1337-1340
  • 37 Ramirez de Molina A, Penalva V, Lucas L. et al . Regulation of choline kinase activity by Ras proteins involves Ral-GDS and PI3K.  Oncogene. 2002a;  31 21:937-21:946
  • 38 Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R. et al . Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers.  Biochem Biophys Res Commun. 2002b;  296 580-583
  • 39 Ratnam S, Kent C. Early increase in choline kinase activity upon induction of the H-ras oncogene in mouse fibroblast cell lines.  Arch Biochem Biophys. 1995;  323 313-322
  • 40 Reske SN, Blumstein NM, Neumaier B. et al . Imaging prostate cancer with [11C]choline PET/CT.  J Nucl Med. 2006;  47 1249-1254
  • 41 Reske SN, Blumstein NM, Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy.  Eur J Nucl Med Mol Imaging. 2008;  35 9-17
  • 42 Rinnab L, Mottaghy FM, Blumstein NM. et al . Evaluation of [11C]choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer.  BJU Int. 2007;  100 786-793
  • 43 Roberts SG, Blute ML, Bergstralh EJ. et al . PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer.  Mayo Clin Proc. 2001;  76 576-581
  • 44 Scattoni V, Picchio M, Suardi N. et al . Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy.  Eur Urol. 2007;  52 423-429
  • 45 Scher B, Seitz M, Albinger W. et al . Value of [11C]choline PET and PET/CT in patients with suspected prostate cancer.  Eur J Nucl Med Mol Imaging. 2007;  34 45-53
  • 46 Schiavina R, Scattoni V, Castellucci P. et al . [11C]choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms.  Eur Urol. 2008;  54 392-401
  • 47 Schmid DT, John H, Zweifel R. et al . Fluorocholine PET/CT in patients with prostate cancer: initial experience.  Radiology. 2005;  235 623-628
  • 48 Smith RA, Cokkinides V, Eyre HJ. Cancer screening in the United States, 2007: a review of current guidelines, practices, and prospects.  CA Cancer J Clin. 2007;  57 90-104
  • 49 Sutinen E, Nurmi M, Roivainen A. et al . Kinetics of [11C]choline uptake in prostate cancer: a PET study.  Eur J Nucl Med Mol Imaging. 2004;  31 317-324
  • 50 Toth G, Lengyel Z, Balkay L. et al . Detection of prostate cancer with 11C-methionine positron emission tomography.  J Urol. 2005;  173 66-69 discussion 9
  • 51 Tuncel M, Souvatzoglou M, Herrmann K. et al . [11C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer.  Nucl Med Biol. 2008;  35 689-695
  • 52 Wachter S, Tomek S, Kurtaran A. et al . [11C]acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer.  J Clin Oncol. 2006;  24 2513-2519
  • 53 Yamaguchi T, Lee J, Uemura H. et al . Prostate cancer: a comparative study of [11C]choline PET and MR imaging combined with proton MR spectroscopy.  Eur J Nucl Med Mol Imaging. 2005;  32 742-748
  • 54 Yoshida S, Nakagomi K, Goto S. et al . [11C]choline positron emission tomography in prostate cancer: primary staging and recurrent site staging.  Urol Int. 2005;  74 214-220

Korrespondenzadresse

Prof. Dr. Bernd Joachim Krause

Klinik- und Poliklinik für Nuklearmedizin

Klinikum rechts der Isar

Technische Universität München

Ismaninger Straße 22

81675 München

Phone: +49/89/4140 2961

Fax: +49/89/4140 4841

Email: bernd-joachim.krause@tum.de

    >