Semin Respir Crit Care Med 2010; 31(3): 276-285
DOI: 10.1055/s-0030-1254068
© Thieme Medical Publishers

Diagnostic Imaging in COPD

George R. Washko1
  • 1Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
Further Information

Publication History

Publication Date:
21 May 2010 (online)

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a pathological pulmonary condition characterized by expiratory airflow obstruction due to emphysematous destruction of the lung parenchyma and small airways remodeling. Although spirometry is a very useful diagnostic tool for screening large groups of smokers, it cannot readily differentiate the etiologies of COPD and thus has limited utility in characterizing subjects for clinical and investigational purposes. There has been a longstanding interest in thoracic imaging and its role in the in vivo characterization of smoking-related lung disease. Research in this area has spanned readily available modalities such as chest -ray and computed tomography to more advanced imaging techniques such as optical coherence tomography (OCT) and magnetic resonance imaging (MRI). Although the chest x-ray is almost universally available, it lacks sensitivity in detecting both airway disease and mild emphysema and is not generally amenable to objective analysis. Computed tomography has become the standard modality to objectively visualize lung disease. It can provide useful measures of the presence and extent of emphysema, airway disease, and, more recently, pulmonary vascular disease for clinical correlation. It does, however, face limitations in standardization across brands and generations of scanners, and the ionizing radiation associated with image acquisition is of concern to both patients and health care providers. Newer techniques such as OCT and MRI offer exciting in vivo insights into lung structure and function that were previously available only in necropsy specimens and physiology laboratories. Given the more limited availability of these techniques, they will be viewed here as adjuncts to computed tomographic imaging.

REFERENCES

  • 1 Pauwels R A, Buist A S, Ma P, Jenkins C R, Hurd S S. GOLD Scientific Committee . Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: National Heart, Lung, and Blood Institute and World Health Organization Global Initiative for Chronic Obstructive Lung Disease (GOLD): executive summary.  Respir Care. 2001;  46 798-825
  • 2 Jones P W. Health status measurement in chronic obstructive pulmonary disease.  Thorax. 2001;  56 880-887
  • 3 Fishman A, Martinez F, Naunheim K National Emphysema Treatment Trial Research Group et al. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema.  N Engl J Med. 2003;  348 2059-2073
  • 4 Sutinen S, Christoforidis A J, Klugh G A, Pratt P C. Roentgenologic criteria for the recognition of nonsymptomatic pulmonary emphysema: correlation between roentgenologic findings and pulmonary pathology.  Am Rev Respir Dis. 1965;  91 69-76
  • 5 Nicklaus T M, Stowell D W, Christiansen W R, Renzetti Jr A D. The accuracy of the roentgenologic diagnosis of chronic pulmonary emphysema.  Am Rev Respir Dis. 1966;  93 889-899
  • 6 Miniati M, Monti S, Stolk J et al.. Value of chest radiography in phenotyping chronic obstructive pulmonary disease.  Eur Respir J. 2008;  31 509-515
  • 7 Webb W R. Thin-section CT of the secondary pulmonary lobule: anatomy and the image—the 2004 Fleischner lecture.  Radiology. 2006;  239 322-338
  • 8 Snider G L. Emphysema: the first two centuries—and beyond: a historical overview, with suggestions for future research: Part 1.  Am Rev Respir Dis. 1992;  146(5 Pt 1) 1334-1344
  • 9 Foster Jr W L, Pratt P C, Roggli V L, Godwin J D, Halvorsen Jr R A, Putman C E. Centrilobular emphysema: CT-pathologic correlation.  Radiology. 1986;  159 27-32
  • 10 Bergin C, Müller N, Nichols D M et al.. The diagnosis of emphysema: a computed tomographic-pathologic correlation.  Am Rev Respir Dis. 1986;  133 541-546
  • 11 Hruban R H, Meziane M A, Zerhouni E A et al.. High resolution computed tomography of inflation-fixed lungs: pathologic-radiologic correlation of centrilobular emphysema.  Am Rev Respir Dis. 1987;  136 935-940
  • 12 Hayhurst M D, MacNee W, Flenley D C et al.. Diagnosis of pulmonary emphysema by computerised tomography.  Lancet. 1984;  2 320-322
  • 13 Washko G R, Criner G J, Mohsenifar Z et al.. Computed tomographic-based quantification of emphysema and correlation to pulmonary function and mechanics.  COPD. 2008;  5 177-186
  • 14 Park K J, Bergin C J, Clausen J L. Quantitation of emphysema with three-dimensional CT densitometry: comparison with two-dimensional analysis, visual emphysema scores, and pulmonary function test results.  Radiology. 1999;  211 541-547
  • 15 Hersh C P, Washko G R, Jacobson F L et al.. Interobserver variability in the determination of upper lobe-predominant emphysema.  Chest. 2007;  131 424-431
  • 16 Müller N L, Coxson H. Chronic obstructive pulmonary disease, IV: Imaging the lungs in patients with chronic obstructive pulmonary disease.  Thorax. 2002;  57 982-985
  • 17 Stern E J, Frank M S. CT of the lung in patients with pulmonary emphysema: diagnosis, quantification, and correlation with pathologic and physiologic findings.  AJR Am J Roentgenol. 1994;  162 791-798
  • 18 Guenard H, Diallo M H, Laurent F, Vergeret J. Lung density and lung mass in emphysema.  Chest. 1992;  102 198-203
  • 19 Heremans A, Verschakelen J A, Van fraeyenhoven L, Demedts M. Measurement of lung density by means of quantitative CT scanning: a study of correlations with pulmonary function tests.  Chest. 1992;  102 805-811
  • 20 Gould G A, Redpath A T, Ryan M et al.. Lung CT density correlates with measurements of airflow limitation and the diffusing capacity.  Eur Respir J. 1991;  4 141-146
  • 21 Müller N L, Staples C A, Miller R R, Abboud R T. “Density mask”: an objective method to quantitate emphysema using computed tomography.  Chest. 1988;  94 782-787
  • 22 Gevenois P A, De Vuyst P, de Maertelaer V et al.. Comparison of computed density and microscopic morphometry in pulmonary emphysema.  Am J Respir Crit Care Med. 1996;  154 187-192
  • 23 Nakano Y, Coxson H O, Bosan S et al.. Core to rind distribution of severe emphysema predicts outcome of lung volume reduction surgery.  Am J Respir Crit Care Med. 2001;  164 2195-2199
  • 24 Rogers R M, Coxson H O, Sciurba F C, Keenan R J, Whittall K P, Hogg J C. Preoperative severity of emphysema predictive of improvement after lung volume reduction surgery: use of CT morphometry.  Chest. 2000;  118 1240-1247
  • 25 Dirksen A, Dijkman J H, Madsen F et al.. A randomized clinical trial of alpha(1)-antitrypsin augmentation therapy.  Am J Respir Crit Care Med. 1999;  160(5 Pt 1) 1468-1472
  • 26 Martinez F J, Curtis J L, Sciurba F National Emphysema Treatment Trial Research Group et al. Sex differences in severe pulmonary emphysema.  Am J Respir Crit Care Med. 2007;  176 243-252
  • 27 Dransfield M T, Washko G R, Foreman M G, Estepar R S, Reilly J, Bailey W C. Gender differences in the severity of CT emphysema in COPD.  Chest. 2007;  132 464-470
  • 28 Stoel B C, Putter H, Bakker M E et al.. Volume correction in computed tomography densitometry for follow-up studies on pulmonary emphysema.  Proc Am Thorac Soc. 2008;  5 919-924
  • 29 Gierada D S, Yusen R D, Pilgram T K et al.. Repeatability of quantitative CT indexes of emphysema in patients evaluated for lung volume reduction surgery.  Radiology. 2001;  220 448-454
  • 30 Boedeker K L, McNitt-Gray M F, Rogers S R et al.. Emphysema: effect of reconstruction algorithm on CT imaging measures.  Radiology. 2004;  232 295-301
  • 31 Hogg J C, Macklem P T, Thurlbeck W M. Site and nature of airway obstruction in chronic obstructive lung disease.  N Engl J Med. 1968;  278 1355-1360
  • 32 Nakano Y, Muro S, Sakai H et al.. Computed tomographic measurements of airway dimensions and emphysema in smokers: correlation with lung function.  Am J Respir Crit Care Med. 2000;  162(3 Pt 1) 1102-1108
  • 33 Nakano Y, Wong J C, de Jong P A et al.. The prediction of small airway dimensions using computed tomography.  Am J Respir Crit Care Med. 2005;  171 142-146
  • 34 Hasegawa M, Nasuhara Y, Onodera Y et al.. Airflow limitation and airway dimensions in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2006;  173 1309-1315
  • 35 Kim W J, Silverman E K, Hoffman E NETT Research Group et al. CT metrics of airway disease and emphysema in severe COPD.  Chest. 2009;  136 396-404
  • 36 Matsuoka S, Kurihara Y, Yagihashi K, Hoshino M, Nakajima Y. Airway dimensions at inspiratory and expiratory multisection CT in chronic obstructive pulmonary disease: correlation with airflow limitation.  Radiology. 2008;  248 1042-1049
  • 37 Hasegawa M, Makita H, Nasuhara Y et al.. Relationship between improved airflow limitation and changes in airway calibre induced by inhaled anticholinergic agents in COPD.  Thorax. 2009;  64 332-338
  • 38 Patel I S, Vlahos I, Wilkinson T M et al.. Bronchiectasis, exacerbation indices, and inflammation in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2004;  170 400-407
  • 39 Grenier P A, Beigelman-Aubry C, Fétita C, Prêteux F, Brauner M W, Lenoir S. New frontiers in CT imaging of airway disease.  Eur Radiol. 2002;  12 1022-1044
  • 40 McGuinness G, Naidich D P. CT of airways disease and bronchiectasis.  Radiol Clin North Am. 2002;  40 1-19
  • 41 Patel B D, Coxson H O, Pillai S G International COPD Genetics Network et al. Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2008;  178 500-505
  • 42 Parr D G, Guest P G, Reynolds J H, Dowson L J, Stockley R A. Prevalence and impact of bronchiectasis in alpha1-antitrypsin deficiency.  Am J Respir Crit Care Med. 2007;  176 1215-1221
  • 43 Boiselle P M, O'Donnell C R, Bankier A A et al.. Tracheal collapsibility in healthy volunteers during forced expiration: assessment with multidetector CT.  Radiology. 2009;  252 255-262
  • 44 Webb W R. High-resolution computed tomography of obstructive lung disease.  Radiol Clin North Am. 1994;  32 745-757
  • 45 Oswald-Mammosser M, Weitzenblum E, Quoix E et al.. Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure.  Chest. 1995;  107 1193-1198
  • 46 Weitzenblum E, Sautegeau A, Ehrhart M, Mammosser M, Hirth C, Roegel E. Long-term course of pulmonary arterial pressure in chronic obstructive pulmonary disease.  Am Rev Respir Dis. 1984;  130 993-998
  • 47 Scharf S M, Iqbal M, Keller C, Criner G, Lee S, Fessler H E. National Emphysema Treatment Trial (NETT) Group . Hemodynamic characterization of patients with severe emphysema.  Am J Respir Crit Care Med. 2002;  166 314-322
  • 48 Burrows B, Kettel L J, Niden A H, Rabinowitz M, Diener C F. Patterns of cardiovascular dysfunction in chronic obstructive lung disease.  N Engl J Med. 1972;  286 912-918
  • 49 Traver G A, Cline M G, Burrows B. Predictors of mortality in chronic obstructive pulmonary disease: a 15-year follow-up study.  Am Rev Respir Dis. 1979;  119 895-902
  • 50 Kessler R, Faller M, Fourgaut G, Mennecier B, Weitzenblum E. Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1999;  159 158-164
  • 51 Matsuoka S, Washko G R, Dransfield M T et al.. Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation.  Acad Radiol. 2010;  17 93-99
  • 52 Matsuoka S, Washko G R, Yamashiro T National Emphysema Treatment Trial Research Group et al. Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema.  Am J Respir Crit Care Med. 2010;  181 218-225
  • 53 Nyquist H. Certain topics in telegraph transmission theory.  Trans AIEE. 1928;  47 617-644
  • 54 Hughes J M, Hoppin Jr F G, Mead J. Effect of lung inflation on bronchial length and diameter in excised lungs.  J Appl Physiol. 1972;  32 25-35
  • 55 Staring M, Baker M E, Shamonin D P, Stolk J, Reiber J HC, Stoel B C. Towards local estimation of emphysema progression using image registration. In: Samei E Proceedings of the SPIE. Medical Imaging 2009. Physics of Medical Imaging Belligham, WA; Society of Photo-Optical Instrumentation Engineers 2009 7259:72590O–1–9
  • 56 Brenner D J, Hall E J. Computed tomography—an increasing source of radiation exposure.  N Engl J Med. 2007;  357 2277-2284
  • 57 Fujimoto J G, Brezinski M E, Tearney G J et al.. Optical biopsy and imaging using optical coherence tomography.  Nat Med. 1995;  1 970-972
  • 58 Tearney G J, Brezinski M E, Bouma B E et al.. In vivo endoscopic optical biopsy with optical coherence tomography.  Science. 1997;  276 2037-2039
  • 59 Huang D, Swanson E A, Lin C P et al.. Optical coherence tomography.  Science. 1991;  254 1178-1181
  • 60 Coxson H O, Quiney B, Sin D D et al.. Airway wall thickness assessed using computed tomography and optical coherence tomography.  Am J Respir Crit Care Med. 2008;  177 1201-1206
  • 61 Yang V X, Tang S J, Gordon M L et al.. Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience.  Gastrointest Endosc. 2005;  61 879-890
  • 62 Chen Z, Milner T E, Srinivas S et al.. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography.  Opt Lett. 1997;  22 1119-1121
  • 63 Short M A, Lam S, McWilliams A, Zhao J, Lui H, Zeng H. Development and preliminary results of an endoscopic Raman probe for potential in vivo diagnosis of lung cancers.  Opt Lett. 2008;  33 711-713
  • 64 Kauczor H U, Ley-Zaporozhan J, Ley S. Imaging of pulmonary pathologies: focus on magnetic resonance imaging.  Proc Am Thorac Soc. 2009;  6 458-463
  • 65 Yablonskiy D A, Sukstanskii A L, Leawoods J C et al.. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI.  Proc Natl Acad Sci U S A. 2002;  99 3111-3116
  • 66 Patz S, Muradian I, Hrovat M I et al.. Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2T.  Acad Radiol. 2008;  15 713-727
  • 67 Driehuys B, Cofer G P, Pollaro J, Mackel J B, Hedlund L W, Johnson G A. Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI.  Proc Natl Acad Sci U S A. 2006;  103 18278-18283
  • 68 Mugler III J P, Driehuys B, Brookeman J R et al.. MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results.  Magn Reson Med. 1997;  37 809-815

George R WashkoM.D. 

Pulmonary Division, Clinics 3, Brigham and Women's Hospital

75 Francis St., Boston, MA 02115

Email: gwashko@partners.org

    >