Semin Respir Crit Care Med 2010; 31(3): 267-275
DOI: 10.1055/s-0030-1254067
© Thieme Medical Publishers

The Potential Value of Biomarkers in Diagnosis and Staging of COPD and Exacerbations

Anant R.C Patel1 , John R. Hurst1 , Jadwiga A. Wedzicha1
  • 1Academic Unit of Respiratory Medicine, University College London Medical School, London, United Kingdom
Further Information

Publication History

Publication Date:
21 May 2010 (online)

ABSTRACT

There is an unmet need in the diagnosis, phenotyping, and staging of COPD that could potentially be fulfilled by a validated molecular biomarker. Many promising candidates have been investigated, and some have been shown to be useful in certain situations. However, to date there is no outstanding disease-specific biomarker for widespread clinical application for patients in the stable state. Given the functional, social, and financial importance of exacerbations of COPD, it would be very useful to be able to employ a biomarker to aid optimal treatment and predict clinical outcome from the acute episode. Although serum C-reactive protein (CRP) is not specific to COPD, its use as a molecular biomarker in the stable state and at exacerbation has been studied extensively, and it remains the most commonly measured molecular biomarker in routine secondary care practice. Utilizing biomarkers in combinations may ultimately prove more useful. Airway-derived biomarkers and their relationships with outcome measures require further longitudinal study as well as refinement of sampling techniques to make them more broadly applicable. There is substantial ongoing investigation of many biomarkers that we are hopeful will advance the field for the benefit of our patients.

REFERENCES

  • 1 Atkinson A J, Colburn W A, DeGruttola V G Biomarkers Definitions Working Group et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.  Clin Pharmacol Ther. 2001;  69 89-95
  • 2 Global strategy for diagnosis, management and prevention of chronic obstructive pulmonary disease. Available at http://www.goldcopd.org Accessed November 10, 2009
  • 3 Celli B R, Cote C G, Marin J M et al.. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease.  N Engl J Med. 2004;  350 1005-1012
  • 4 Miller M R, Crapo R, Hankinson J ATS/ERS Task Force et al. General considerations for lung function testing.  Eur Respir J. 2005;  26 153-161
  • 5 Swanney M P, Ruppel G, Enright P L et al.. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction.  Thorax. 2008;  63 1046-1051
  • 6 Vollmer W M, Gíslason T, Burney P et al.. Comparison of spirometry criteria for the diagnosis of COPD: results from the BOLD study.  Eur Respir J. 2009;  34 588-597
  • 7 Jones P W, Wijskstra P J. Quality of life in patients with chronic obstructive pulmonary disease. In: Siafakas NM Management of Chronic Obstructive Pulmonary Disease. European Respiratory Monograph 38, Vol 11. Sheffield, UK; European Respiratory Society Journals Ltd 2006: 375-386
  • 8 Cazzola M, MacNee W, Martinez F J American Thoracic Society et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers.  Eur Respir J. 2008;  31 416-469
  • 9 Mortensen R F. C-reactive protein, inflammation, and innate immunity.  Immunol Res. 2001;  24 163-176
  • 10 Pepys M B, Hirschfield G M. C-reactive protein: a critical update.  J Clin Invest. 2003;  111 1805-1812
  • 11 McGarvey L P, John M, Anderson J A, Zvarich M, Wise R A. TORCH Clinical Endpoint Committee . Ascertainment of cause-specific mortality in COPD: operations of the TORCH Clinical Endpoint Committee.  Thorax. 2007;  62 411-415
  • 12 Mannino D M, Ford E S, Redd S C. Obstructive and restrictive lung disease and markers of inflammation: data from the Third National Health and Nutrition Examination.  Am J Med. 2003;  114 758-762
  • 13 Sin D D, Man S FP. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease.  Circulation. 2003;  107 1514-1519
  • 14 Pinto-Plata V M, Müllerova H, Toso J F et al.. C-reactive protein in patients with COPD, control smokers and non-smokers.  Thorax. 2006;  61 23-28
  • 15 Sin D D, Lacy P, York E, Man S F. Effects of fluticasone on systemic markers of inflammation in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2004;  170 760-765
  • 16 Dahl M, Vestbo J, Lange P, Bojesen S E, Tybjaerg-Hansen A, Nordestgaard B G. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2007;  175 250-255
  • 17 Man SFP, Connett J E, Anthonisen N R, Wise R A, Tashkin D P, Sin D D. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease.  Thorax. 2006;  61 849-853
  • 18 de Torres J P, Pinto-Plata V, Casanova C et al.. C-reactive protein levels and survival in patients with moderate to very severe COPD.  Chest. 2008;  133 1336-1343
  • 19 de Torres J P, Cordoba-Lanus E, López-Aguilar C et al.. C-reactive protein levels and clinically important predictive outcomes in stable COPD patients.  Eur Respir J. 2006;  27 902-907
  • 20 Limper A H, Roman J. Fibronectin: a versatile matrix protein with roles in thoracic development, repair and infection.  Chest. 1992;  101 1663-1673
  • 21 Man S F, Xing L, Connett J E et al.. Circulating fibronectin to C-reactive protein ratio and mortality: a biomarker in COPD?.  Eur Respir J. 2008;  32 1451-1457
  • 22 Lomas D A, Silverman E K, Edwards L D, Miller B E, Coxson H O, Tal-Singer R. Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) investigators . Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort.  Thorax. 2008;  63 1058-1063
  • 23 Lomas D A, Silverman E K, Edwards L D Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints study investigators et al. Serum surfactant protein D is steroid sensitive and associated with exacerbations of COPD.  Eur Respir J. 2009;  34 95-102
  • 24 Bhowmik A, Seemungal T A, Sapsford R J, Devalia J L, Wedzicha J A. Comparison of spontaneous and induced sputum for investigation of airway inflammation in chronic obstructive pulmonary disease.  Thorax. 1998;  53 953-956
  • 25 Keatings V M, Collins P D, Scott D M, Barnes P J. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma.  Am J Respir Crit Care Med. 1996;  153 530-534
  • 26 Yamamoto C, Yoneda T, Yoshikawa M et al.. Airway inflammation in COPD assessed by sputum levels of interleukin-8.  Chest. 1997;  112 505-510
  • 27 Kostikas K, Papatheodorou G, Psathakis K, Panagou P, Loukides S. Oxidative stress in expired breath condensate of patients with COPD.  Chest. 2003;  124 1373-1380
  • 28 Montuschi P, Collins J V, Ciabattoni G et al.. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers.  Am J Respir Crit Care Med. 2000;  162(3 Pt 1) 1175-1177
  • 29 Horváth I, Hunt J, Barnes P J ATS/ERS Task Force on Exhaled Breath Condensate et al. Exhaled breath condensate: methodological recommendations and unresolved questions.  Eur Respir J. 2005;  26 523-548
  • 30 Rutgers S R, van der Mark T W, Coers W et al.. Markers of nitric oxide metabolism in sputum and exhaled air are not increased in chronic obstructive pulmonary disease.  Thorax. 1999;  54 576-580
  • 31 Bhowmik A, Seemungal T A, Donaldson G C, Wedzicha J A. Effects of exacerbations and seasonality on exhaled nitric oxide in COPD.  Eur Respir J. 2005;  26 1009-1015
  • 32 Brindicci C, Ito K, Resta O, Pride N B, Barnes P J, Kharitonov S A. Exhaled nitric oxide from lung periphery is increased in COPD.  Eur Respir J. 2005;  26 52-59
  • 33 Fens N, Zwinderman A H, van der Schee M P et al.. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma.  Am J Respir Crit Care Med. 2009;  180 1076-1082
  • 34 Donaldson G C, Seemungal T A, Bhowmik A, Wedzicha J A. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease.  Thorax. 2002;  57 847-852
  • 35 Seemungal T A, Donaldson G C, Paul E A, Bestall J C, Jeffries D J, Wedzicha J A. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1998;  157(5 Pt 1) 1418-1422
  • 36 Garcia-Aymerich J, Farrero E, Félez M A, Izquierdo J, Marrades R M, Antó J M. Estudi del Factors de Risc d'Agudització de la MPOC investigators . Risk factors of readmission to hospital for a COPD exacerbation: a prospective study.  Thorax. 2003;  58 100-105
  • 37 Soler-Cataluña J J, Martínez-García M A, Román Sánchez P, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease.  Thorax. 2005;  60 925-931
  • 38 Wedzicha J A, Seemungal T A. COPD exacerbations: defining their cause and prevention.  Lancet. 2007;  370 786-796
  • 39 Hurst J R, Perera W R, Wilkinson T M, Donaldson G C, Wedzicha J A. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2006;  173 71-78
  • 40 Hurst J R, Donaldson G C, Perera W R et al.. Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2006;  174 867-874
  • 41 Bozinovski S, Hutchinson A, Thompson M et al.. Serum amyloid a is a biomarker of acute exacerbations of chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2008;  177 269-278
  • 42 Stolz D, Christ-Crain M, Morgenthaler N G et al.. Copeptin, C-reactive protein, and procalcitonin as prognostic biomarkers in acute exacerbation of COPD.  Chest. 2007;  131 1058-1067
  • 43 Perera W R, Hurst J R, Wilkinson T M et al.. Inflammatory changes, recovery and recurrence at COPD exacerbation.  Eur Respir J. 2007;  29 527-534
  • 44 Seemungal T A, Donaldson G C, Bhowmik A, Jeffries D J, Wedzicha J A. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2000;  161 1608-1613
  • 45 Rohde G, Wiethege A, Borg I et al.. Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study.  Thorax. 2003;  58 37-42
  • 46 Spurrell J C, Wiehler S, Zaheer R S, Sanders S P, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection.  Am J Physiol Lung Cell Mol Physiol. 2005;  289 L85-L95
  • 47 Quint J K, Donaldson G C, Goldring J J, Baghai-Ravary R, Hurst J R, Wedzicha J A. Serum IP-10 as a biomarker of human rhinovirus infection at exacerbation of COPD.  Chest. 2009;  , October 16 [Epub ahead of print]
  • 48 Bhowmik A, Seemungal T A, Sapsford R J, Wedzicha J A. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations.  Thorax. 2000;  55 114-120
  • 49 Patel I S, Seemungal T A, Wilks M, Lloyd-Owen S J, Donaldson G C, Wedzicha J A. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations.  Thorax. 2002;  57 759-764
  • 50 Donaldson G C, Seemungal T A, Patel I S et al.. Airway and systemic inflammation and decline in lung function in patients with COPD.  Chest. 2005;  128 1995-2004
  • 51 Zhang W, Yan S D, Zhu A et al.. Expression of Egr-1 in late stage emphysema.  Am J Pathol. 2000;  157 1311-1320
  • 52 Ning W, Li C J, Kaminski N et al.. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease.  Proc Natl Acad Sci U S A. 2004;  101 14895-14900
  • 53 Ning W, Lee J, Kaminski N et al.. Comprehensive analysis of gene expression on GOLD-2 Versus GOLD-0 smokers reveals novel genes important in the pathogenesis of COPD.  Proc Am Thorac Soc. 2006;  3 466
  • 54 Bhattacharya S, Srisuma S, Demeo D L et al.. Molecular biomarkers for quantitative and discrete COPD phenotypes.  Am J Respir Cell Mol Biol. 2009;  40 359-367

Anant R.C PatelM.B. B.S. 

Academic Unit of Respiratory Medicine, University College London Medical School

Royal Free Campus, Rowland Hill St., London NW3 2PF, UK

Email: anant.patel@medsch.ucl.ac.uk

    >