Semin Respir Crit Care Med 2010; 31(3): 257-266
DOI: 10.1055/s-0030-1254066
© Thieme Medical Publishers

Pathogenesis of Inflammation and Repair in Advanced COPD

William D. Cornwell1 , Victor Kim2 , Changcheng Song1 , Thomas J. Rogers1
  • 1Fels Institute for Cancer Research and Molecular Biology, Center for Substance Abuse Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania
  • 2Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
Further Information

Publication History

Publication Date:
21 May 2010 (online)

ABSTRACT

Chronic obstructive pulmonary disease is characterized by an abnormal persistent inflammatory response to noxious environmental stimuli, most commonly cigarette smoke. Although cigarette smoking elicits airway inflammation in all of those who smoke, persistent inflammation and clinically significant COPD occurs in only a minority of smokers. The pathogenesis of COPD involves the recruitment and regulation of neutrophils, macrophages, and lymphocytes to the lung, as well as the induction of oxidative stress, all of which result in lung parenchymal destruction and airway remodeling. Recent research has generated a greater understanding of the mechanisms responsible for COPD development, including new concepts in T cell biology and the increasing recognition that the processes governing lung cell apoptosis are upregulated. We are also starting to understand the reasons for continued inflammation even after smoking cessation, which accelerates the rate of lung function decline in COPD. Herein we review our current knowledge of the inflammatory pathways involved in COPD pathogenesis, as well as newer concepts that have begun to unfold in recent years.

REFERENCES

  • 1 Pauwels R A, Buist A S, Ma P, Jenkins C R, Hurd S S. GOLD Scientific Committee . Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: National Heart, Lung, and Blood Institute and World Health Organization Global Initiative for Chronic Obstructive Lung Disease (GOLD): executive summary.  Respir Care. 2001;  46 798-825
  • 2 Fletcher C, Peto R. The natural history of chronic airflow obstruction.  BMJ. 1977;  1 1645-1648
  • 3 Xu X, Weiss S T, Rijcken B, Schouten J P. Smoking, changes in smoking habits, and rate of decline in FEV1: new insight into gender differences.  Eur Respir J. 1994;  7 1056-1061
  • 4 American Thoracic Society . Cigarette smoking and health.  Am J Respir Crit Care Med. 1996;  153 861-865
  • 5 Larsson K. Aspects on pathophysiological mechanisms in COPD.  J Intern Med. 2007;  262 311-340
  • 6 Quint J K, Wedzicha J A. The neutrophil in chronic obstructive pulmonary disease.  J Allergy Clin Immunol. 2007;  119 1065-1071
  • 7 Barnes P J. Immunology of asthma and chronic obstructive pulmonary disease.  Nat Rev Immunol. 2008;  8 183-192
  • 8 Beeh K M, Kornmann O, Buhl R, Culpitt S V, Giembycz M A, Barnes P J. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4.  Chest. 2003;  123 1240-1247
  • 9 Tanino M, Betsuyaku T, Takeyabu K et al.. Increased levels of interleukin-8 in BAL fluid from smokers susceptible to pulmonary emphysema.  Thorax. 2002;  57 405-411
  • 10 Traves S L, Culpitt S V, Russell R E, Barnes P J, Donnelly L E. Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD.  Thorax. 2002;  57 590-595
  • 11 Hartl D, Latzin P, Hordijk P et al.. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease.  Nat Med. 2007;  13 1423-1430
  • 12 Qiu Y, Zhu J, Bandi V et al.. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2003;  168 968-975
  • 13 Cosio M G, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease.  N Engl J Med. 2009;  360 2445-2454
  • 14 Saetta M, Di Stefano A, Turato G et al.. CD8 + T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1998;  157(3 Pt 1) 822-826
  • 15 Hodge S, Hodge G, Nairn J, Holmes M, Reynolds P N. Increased airway granzyme b and perforin in current and ex-smoking COPD subjects.  COPD. 2006;  3 179-187
  • 16 Barczyk A, Pierzchała W, Kon O M, Cosio B, Adcock I M, Barnes P J. Cytokine production by bronchoalveolar lavage T lymphocytes in chronic obstructive pulmonary disease.  J Allergy Clin Immunol. 2006;  117 1484-1492
  • 17 Shaykhiev R, Krause A, Salit J et al.. Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease.  J Immunol. 2009;  183 2867-2883
  • 18 Hogg J C, Chu F, Utokaparch S et al.. The nature of small-airway obstruction in chronic obstructive pulmonary disease.  N Engl J Med. 2004;  350 2645-2653
  • 19 Retamales I, Elliott W M, Meshi B et al.. Amplification of inflammation in emphysema and its association with latent adenoviral infection.  Am J Respir Crit Care Med. 2001;  164 469-473
  • 20 Sullivan A K, Simonian P L, Falta M T et al.. Oligoclonal CD4 + T cells in the lungs of patients with severe emphysema.  Am J Respir Crit Care Med. 2005;  172 590-596
  • 21 Grumelli S, Corry D B, Song L Z et al.. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema.  PLoS Med. 2004;  1 e8
  • 22 Di Stefano A, Caramori G, Capelli A et al.. STAT4 activation in smokers and patients with chronic obstructive pulmonary disease.  Eur Respir J. 2004;  24 78-85
  • 23 Saetta M, Di Stefano A, Maestrelli P et al.. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis.  Am Rev Respir Dis. 1993;  147 301-306
  • 24 Finkelstein R, Fraser R S, Ghezzo H, Cosio M G. Alveolar inflammation and its relation to emphysema in smokers.  Am J Respir Crit Care Med. 1995;  152(5 Pt 1) 1666-1672
  • 25 Corthay A. How do regulatory T cells work?.  Scand J Immunol. 2009;  70 326-336
  • 26 Barceló B, Pons J, Ferrer J M, Sauleda J, Fuster A, Agustí A G. Phenotypic characterisation of T-lymphocytes in COPD: abnormal CD4 + CD25 + regulatory T-lymphocyte response to tobacco smoking.  Eur Respir J. 2008;  31 555-562
  • 27 Korn T, Bettelli E, Oukka M, Kuchroo V K. IL-17 and Th17 Cells.  Annu Rev Immunol. 2009;  27 485-517
  • 28 Di Stefano A, Caramori G, Gnemmi I et al.. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients.  Clin Exp Immunol. 2009;  157 316-324
  • 29 Wu C H, Lin H H, Yan F P, Wu C H, Wang C J. Immunohistochemical detection of apoptotic proteins, p53/Bax and JNK/FasL cascade, in the lung of rats exposed to cigarette smoke.  Arch Toxicol. 2006;  80 328-336
  • 30 Park H, Li Z, Yang X O et al.. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.  Nat Immunol. 2005;  6 1133-1141
  • 31 Koenen H J, Smeets R L, Vink P M, van Rijssen E, Boots A M, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells.  Blood. 2008;  112 2340-2352
  • 32 Martinez F O, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective.  Annu Rev Immunol. 2009;  27 451-483
  • 33 Serbina N V, Jia T, Hohl T M, Pamer E G. Monocyte-mediated defense against microbial pathogens.  Annu Rev Immunol. 2008;  26 421-452
  • 34 Hoser G, Domagała-Kulawik J, Droszcz P, Droszcz W, Kawiak J. Lymphocyte subsets differences in smokers and nonsmokers with primary lung cancer: a flow cytometry analysis of bronchoalveolar lavage fluid cells.  Med Sci Monit. 2003;  9 BR310-BR315
  • 35 Mancini N M, Béné M C, Gérard H et al.. Early effects of short-time cigarette smoking on the human lung: a study of bronchoalveolar lavage fluids.  Lung. 1993;  171 277-291
  • 36 Soler P, Moreau A, Basset F, Hance A J. Cigarette smoking-induced changes in the number and differentiated state of pulmonary dendritic cells/Langerhans cells.  Am Rev Respir Dis. 1989;  139 1112-1117
  • 37 Casolaro M A, Bernaudin J F, Saltini C, Ferrans V J, Crystal R G. Accumulation of Langerhans' cells on the epithelial surface of the lower respiratory tract in normal subjects in association with cigarette smoking.  Am Rev Respir Dis. 1988;  137 406-411
  • 38 Tsoumakidou M, Elston W, Zhu J et al.. Cigarette smoking alters bronchial mucosal immunity in asthma.  Am J Respir Crit Care Med. 2007;  175 919-925
  • 39 Rogers A V, Adelroth E, Hattotuwa K, Dewar A, Jeffery P K. Bronchial mucosal dendritic cells in smokers and ex-smokers with COPD: an electron microscopic study.  Thorax. 2008;  63 108-114
  • 40 Vassallo R, Tamada K, Lau J S, Kroening P R, Chen L. Cigarette smoke extract suppresses human dendritic cell function leading to preferential induction of Th-2 priming.  J Immunol. 2005;  175 2684-2691
  • 41 Robbins C S, Dawe D E, Goncharova S I et al.. Cigarette smoke decreases pulmonary dendritic cells and impacts antiviral immune responsiveness.  Am J Respir Cell Mol Biol. 2004;  30 202-211
  • 42 D'hulst A I, Vermaelen K Y, Brusselle G G, Joos G F, Pauwels R A. Time course of cigarette smoke-induced pulmonary inflammation in mice.  Eur Respir J. 2005;  26 204-213
  • 43 Buist A S, Vollmer W M, McBurnie M A. Worldwide burden of COPD in high- and low-income countries, I: The burden of obstructive lung disease (BOLD) initiative.  Int J Tuberc Lung Dis. 2008;  12 703-708
  • 44 Niewoehner D E, Kleinerman J, Rice D B. Pathologic changes in the peripheral airways of young cigarette smokers.  N Engl J Med. 1974;  291 755-758
  • 45 Bosken C H, Hards J, Gatter K, Hogg J C. Characterization of the inflammatory reaction in the peripheral airways of cigarette smokers using immunocytochemistry.  Am Rev Respir Dis. 1992;  145(4 Pt 1) 911-917
  • 46 Lams B E, Sousa A R, Rees P J, Lee T H. Immunopathology of the small-airway submucosa in smokers with and without chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1998;  158(5 Pt 1) 1518-1523
  • 47 Saetta M, Baraldo S, Corbino L et al.. CD8 + ve cells in the lungs of smokers with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 1999;  160 711-717
  • 48 Amin K, Ekberg-Jansson A, Löfdahl C G, Venge P. Relationship between inflammatory cells and structural changes in the lungs of asymptomatic and never smokers: a biopsy study.  Thorax. 2003;  58 135-142
  • 49 Innes A L, Woodruff P G, Ferrando R E et al.. Epithelial mucin stores are increased in the large airways of smokers with airflow obstruction.  Chest. 2006;  130 1102-1108
  • 50 Saetta M, Turato G, Baraldo S et al.. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation.  Am J Respir Crit Care Med. 2000;  161(3 Pt 1) 1016-1021
  • 51 Baraldo S, Saetta M, Cosio M G. Pathophysiology of the small airways.  Semin Respir Crit Care Med. 2003;  24 465-472
  • 52 Wright J L, Hobson J, Wiggs B R, Pare P D, Hogg J C. Effect of cigarette smoking on structure of the small airways.  Lung. 1987;  165 91-100
  • 53 Swan G E, Hodgkin J E, Roby T, Mittman C, Jacobo N, Peters J. Reversibility of airways injury over a 12-month period following smoking cessation.  Chest. 1992;  101 607-612
  • 54 Verbanck S, Schuermans D, Paiva M, Meysman M, Vincken W. Small airway function improvement after smoking cessation in smokers without airway obstruction.  Am J Respir Crit Care Med. 2006;  174 853-857
  • 55 Xu X, Dockery D W, Ware J H, Speizer F E, Ferris Jr B G. Effects of cigarette smoking on rate of loss of pulmonary function in adults: a longitudinal assessment.  Am Rev Respir Dis. 1992;  146(5 Pt 1) 1345-1348
  • 56 Anthonisen N R, Connett J E, Kiley J P et al.. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study.  JAMA. 1994;  272 1497-1505
  • 57 Murray R P, Anthonisen N R, Connett J E Lung Health Study Research Group et al. Effects of multiple attempts to quit smoking and relapses to smoking on pulmonary function.  J Clin Epidemiol. 1998;  51 1317-1326
  • 58 Wright J L, Lawson L M, Pare P D, Wiggs B J, Kennedy S, Hogg J C. Morphology of peripheral airways in current smokers and ex-smokers.  Am Rev Respir Dis. 1983;  127 474-477
  • 59 Rutgers S R, Postma D S, Kauffman H F, Koeter G H, Timens W, ten Hacken N H, van Der Mark T W. Ongoing airway inflammation in patients with COPD who do not currently smoke.  Chest. 2000;  117(5, Suppl 1) 262S
  • 60 MacNee W. Pathogenesis of chronic obstructive pulmonary disease.  Proc Am Thorac Soc. 2005;  2 258-266 discussion 290-291
  • 61 Sethi S, Mallia P, Johnston S L. New paradigms in the pathogenesis of chronic obstructive pulmonary disease II.  Proc Am Thorac Soc. 2009;  6 532-534
  • 62 Moghaddam S J, Clement C G, De la Garza M M et al.. Haemophilus influenzae lysate induces aspects of the chronic obstructive pulmonary disease phenotype.  Am J Respir Cell Mol Biol. 2008;  38 629-638
  • 63 Morris A, Sciurba F C, Lebedeva I P et al.. Association of chronic obstructive pulmonary disease severity and Pneumocystis colonization.  Am J Respir Crit Care Med. 2004;  170 408-413
  • 64 Sethi S, Evans N, Grant B J, Murphy T F. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease.  N Engl J Med. 2002;  347 465-471
  • 65 Seemungal T, Harper-Owen R, Bhowmik A et al.. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2001;  164 1618-1623
  • 66 Bandi V, Apicella M A, Mason E et al.. Nontypeable Haemophilus influenzae in the lower respiratory tract of patients with chronic bronchitis.  Am J Respir Crit Care Med. 2001;  164 2114-2119
  • 67 Sethi S. Pathogenesis and treatment of acute exacerbations of chronic obstructive pulmonary disease.  Semin Respir Crit Care Med. 2005;  26 192-203
  • 68 Nathan C, Shiloh M U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens.  Proc Natl Acad Sci U S A. 2000;  97 8841-8848
  • 69 Daga M K, Chhabra R, Sharma B, Mishra T K. Effects of exogenous vitamin E supplementation on the levels of oxidants and antioxidants in chronic obstructive pulmonary disease.  J Biosci. 2003;  28 7-11
  • 70 Harju T H, Peltoniemi M J, Rytilä P H et al.. Glutathione S-transferase omega in the lung and sputum supernatants of COPD patients.  Respir Res. 2007;  8 48
  • 71 Nadeem A, Raj H G, Chhabra S K. Increased oxidative stress and altered levels of antioxidants in chronic obstructive pulmonary disease.  Inflammation. 2005;  29 23-32
  • 72 Kluchová Z, Petrásová D, Joppa P, Dorková Z, Tkácová R. The association between oxidative stress and obstructive lung impairment in patients with COPD.  Physiol Res. 2007;  56 51-56
  • 73 Kanazawa H, Shiraishi S, Hirata K, Yoshikawa J. Imbalance between levels of nitrogen oxides and peroxynitrite inhibitory activity in chronic obstructive pulmonary disease.  Thorax. 2003;  58 106-109
  • 74 Gumral N, Naziroglu M, Ongel K et al.. Antioxidant enzymes and melatonin levels in patients with bronchial asthma and chronic obstructive pulmonary disease during stable and exacerbation periods.  Cell Biochem Funct. 2009;  27 276-283
  • 75 Altuntaş E, Turgut T, Ilhan N, Deveci F, Muz H M, Celik I. The levels of oxidant and antioxidant in patients with COPD [in Turkish].  Tuberk Toraks. 2003;  51 373-379
  • 76 Moretti M. Erdosteine: its relevance in COPD treatment.  Expert Opin Drug Metab Toxicol. 2009;  5 333-343
  • 77 Kirkil G, Hamdi Muz M, Seçkin D, Sahin K, Küçük O. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease.  Respir Med. 2008;  102 840-844
  • 78 van Overveld F J, Demkow U, Górecka D, de Backer W A, Zielinski J. New developments in the treatment of COPD: comparing the effects of inhaled corticosteroids and N-acetylcysteine.  J Physiol Pharmacol. 2005;  56(Suppl 4) 135-142
  • 79 Massaro G D, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats.  Nat Med. 1997;  3 675-677
  • 80 Ishizawa K, Kubo H, Yamada M et al.. Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema.  FEBS Lett. 2004;  556 249-252
  • 81 Murakami S, Nagaya N, Itoh T et al.. Adrenomedullin regenerates alveoli and vasculature in elastase-induced pulmonary emphysema in mice.  Am J Respir Crit Care Med. 2005;  172 581-589
  • 82 Shigemura N, Sawa Y, Mizuno S et al.. Amelioration of pulmonary emphysema by in vivo gene transfection with hepatocyte growth factor in rats.  Circulation. 2005;  111 1407-1414
  • 83 Lucey E C, Goldstein R H, Breuer R, Rexer B N, Ong D E, Snider G L. Retinoic acid does not affect alveolar septation in adult FVB mice with elastase-induced emphysema.  Respiration. 2003;  70 200-205
  • 84 March T H, Cossey P Y, Esparza D C, Dix K J, McDonald J D, Bowen L E. Inhalation administration of all-trans-retinoic acid for treatment of elastase-induced pulmonary emphysema in Fischer 344 rats.  Exp Lung Res. 2004;  30 383-404
  • 85 Roth M D, Connett J E, D'Armiento J M FORTE Study Investigators et al. Feasibility of retinoids for the treatment of emphysema study.  Chest. 2006;  130 1334-1345
  • 86 Lian X, Yan C, Yang L, Xu Y, Du H. Lysosomal acid lipase deficiency causes respiratory inflammation and destruction in the lung.  Am J Physiol Lung Cell Mol Physiol. 2004;  286 L801-L807
  • 87 Yan C, Du H. Alveolus formation: what have we learned from genetic studies?.  J Appl Physiol. 2004;  97 1543-1548
  • 88 Yokohori N, Aoshiba K, Nagai A. Respiratory Failure Research Group in Japan . Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema.  Chest. 2004;  125 626-632
  • 89 Henson P M, Cosgrove G P, Vandivier R W. State of the art: apoptosis and cell homeostasis in chronic obstructive pulmonary disease.  Proc Am Thorac Soc. 2006;  3 512-516
  • 90 Kasahara Y, Tuder R M, Taraseviciene-Stewart L et al.. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema.  J Clin Invest. 2000;  106 1311-1319
  • 91 Tang K, Rossiter H B, Wagner P D, Breen E C. Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice.  J Appl Physiol. 2004;  97 1559-1566, discussion 1549
  • 92 Tuder R M, Zhen L, Cho C Y et al.. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade.  Am J Respir Cell Mol Biol. 2003;  29 88-97
  • 93 Kasahara Y, Tuder R M, Cool C D, Lynch D A, Flores S C, Voelkel N F. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema.  Am J Respir Crit Care Med. 2001;  163(3 Pt 1) 737-744
  • 94 Petrache I, Natarajan V, Zhen L et al.. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice.  Nat Med. 2005;  11 491-498
  • 95 Yang S R, Chida A S, Bauter M R et al.. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages.  Am J Physiol Lung Cell Mol Physiol. 2006;  291 L46-L57
  • 96 Aoshiba K, Tamaoki J, Nagai A. Acute cigarette smoke exposure induces apoptosis of alveolar macrophages.  Am J Physiol Lung Cell Mol Physiol. 2001;  281 L1392-L1401
  • 97 Kuo W H, Chen J H, Lin H H, Chen B C, Hsu J D, Wang C J. Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke involves p38/JNK MAPK pathway.  Chem Biol Interact. 2005;  155 31-42
  • 98 Carnevali S, Petruzzelli S, Longoni B et al.. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts.  Am J Physiol Lung Cell Mol Physiol. 2003;  284 L955-L963
  • 99 Taraseviciene-Stewart L, Scerbavicius R, Choe K H et al.. An animal model of autoimmune emphysema.  Am J Respir Crit Care Med. 2005;  171 734-742
  • 100 Feghali-Bostwick C A, Gadgil A S, Otterbein L E et al.. Autoantibodies in patients with chronic obstructive pulmonary disease.  Am J Respir Crit Care Med. 2008;  177 156-163

Victor KimM.D. 

785 Parkinson Pavilion

3401 North Broad St., Philadelphia, PA 19140

Email: victor.kim@tuhs.temple.edu

    >