Der Nuklearmediziner 2010; 33(2): 80-84
DOI: 10.1055/s-0030-1251998
Myokardszintigrafie – 2010

© Georg Thieme Verlag KG Stuttgart · New York

Aktuelle Entwicklungen in der Gammakameratechnik für die Myokardperfusionsszintigrafie

Recent Developments in Gamma Camera Technology for Myocardial Perfusion ScintigraphyF. M. Bengel1
  • 1Division of Nuclear Medicine, Russell H Morgan Department of Radiology, The Johns Hopkins University, Baltimore, Maryland, USA
Further Information

Publication History

Publication Date:
31 May 2010 (online)

Zusammenfassung

Getriggert durch ökonomischen Druck, Konkurrenz durch Alternativverfahren und vermehrte Diskussion der Strahlenexposition von Patienten, hat in den letzten Jahren eine rasante Entwicklung der Technologie für die kardiale Einzelphotonenemissionstomografie (SPECT) stattgefunden. Der Trend geht dabei klar hin zu Systemen mit höherer Sensitivität und höherer Auflösung sowie hin zu schnelleren Aufnahmeprotokollen. Diese Ziele werden durch unterschiedliche Maßnahmen erreicht: Zum einen werden von verschiedenen Herstellern neue Halbleiterdetektormaterialien mit neuen Kollimationstechniken in dedizierte Herzkameras integriert. Zum anderen werden durch neue Kollimatoren und Rekonstruktionsalgorithmen auch konventionelle Kamerasysteme verbessert und beschleunigt. Hierdurch können Aufnahmezeiten auf bis zu 10% der vorherigen Standardprotokolle reduziert und/oder die applizierte Aktivität entsprechend verringert werden, ohne an diagnostischer Genauigkeit einzubüßen. Zwar befinden sich viele dieser Entwicklungen noch in der Anfangsphase der klinischen Einführung, ihr großes Potenzial für eine durchgreifende Veränderung der Praxis der Myokardperfusionsszintigrafie wird jedoch immer deutlicher.

Abstract

Economic pressure, competition from alternative modalities and an increasing awareness of patient radiation exposure have triggered a rapid development of novel technology for cardiac single-photon emission computed tomography (SPECT) in recent years. The trend clearly goes towards systems with higher sensitivity and resolution, and towards faster acquisition protocols. Those goals are achieved by various measures: On the one hand, several manufacturers have integrated novel semiconductor detector materials together with innovative collimators into dedicated cardiac scanners. On the other hand, new collimators and reconstruction algorithms have lead to increased speed and accuracy of conventional gamma cameras. Imaging times now can be reduced to as much as 10% of that of previous standard protocols, and/or injected activity can be reduced. This is achieved without loss of diagnostic accuracy. These novel developments are still in early phases of clinical implementation. Their potential for a profound change of the clinical practice of myocardial perfusion scintigraphy, however, becomes increasingly obvious.

Literatur

  • 1 Ali I, Ruddy TD, Almgrahi A. et al . Half-time SPECT myocardial perfusion imaging with attenuation correction.  J Nucl Med. 2009;  50 554-562
  • 2 Anger HO. Scintillation Camera.  The Review of Scientific Instruments. 1958;  29 27-33
  • 3 Bateman TM, Heller GV, McGhie AI. et al . Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging.  J Nucl Cardiol. 2009;  16 726-735
  • 4 Bonow RO. High-speed myocardial perfusion imaging: dawn of a new era in nuclear cardiology?.  JACC Cardiovasc Imaging.. 2008;  1 164-166
  • 5 Borges-Neto S, Pagnanelli RA, Shaw LK. et al . Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies.  J Nucl Cardiol. 2007;  14 555-565
  • 6 Darambara DG, Todd-Pokropek A. Solid state detectors in nuclear medicine.  Q J Nucl Med. 2002;  46 3-7
  • 7 DePuey EG, Bommireddipalli S, Clark J. et al . Wide beam reconstruction “quarter-time” gated myocardial perfusion SPECT functional imaging: a comparison to “full-time” ordered subset expectation maximum.  J Nucl Cardiol. 2009;  16 736-752
  • 8 DePuey EG, Gadiraju R, Clark J. et al . Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: a comparison to “full-time” filtered backprojection.  J Nucl Cardiol. 2008;  15 547-563
  • 9 Einstein AJ, Moser KW, Thompson RC. et al . Radiation dose to patients from cardiac diagnostic imaging.  Circulation. 2007;  116 1290-1305
  • 10 Erlandsson K, Kacperski K, van Gramberg D. et al . Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology.  Phys Med Biol. 2009;  54 2635-2649
  • 11 Esteves FP, Raggi P, Folks RD. et al . Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras.  J Nucl Cardiol. 2009;  16 927-934
  • 12 Funk T, Kirch DL, Koss JE. et al . A novel approach to multipinhole SPECT for myocardial perfusion imaging.  J Nucl Med. 2006;  47 595-602
  • 13 Garcia EV, Faber TL. New trends in camera and software technology in nuclear cardiology.  Cardiol Clin. 2009;  27 227-236
  • 14 Hawman PC, Haines EJ. The cardiofocal collimator: a variable-focus collimator for cardiac SPECT.  Phys Med Biol. 1994;  39 439-450
  • 15 Herzog BA, Buechel RR, Katz R. et al . Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: optimized protocol for scan time reduction.  J Nucl Med. 2010;  51 46-51
  • 16 Hesse B, Tagil K, Cuocolo A. et al . EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology.  Eur J Nucl Med Mol Imaging. 2005;  32 855-897
  • 17 Huang Q, Xu J, Tsui BM. et al . Reconstructing uniformly attenuated rotating slant-hole SPECT projection data using the DBH method.  Phys Med Biol. 2009;  54 4325-4339
  • 18 Hutton BF, Lau YH. Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT.  Phys Med Biol. 1998;  43 1679-1693
  • 19 Marcassa C, Bax JJ, Bengel F. et al . Clinical value, cost-effectiveness, and safety of myocardial perfusion scintigraphy: a position statement.  Eur Heart J. 2008;  29 557-563
  • 20 Radon J. Über die Bestimmung von Funktionen durch ihre Integralwerte laengs gewisser Mannigfaltigkeiten.  Berichte Saechsische Akademie der Wissenschaften. 1917;  29 262-277
  • 21 Schafers M, Bengel F, Bull U. et al . [Position paper nuclear cardiology: update 2008].  Nuklearmedizin. 2009;  48 71-78
  • 22 Sharir T, Ben-Haim S, Merzon K. et al . High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging.  JACC Cardiovasc Imaging. 2008;  1 156-163
  • 23 Venero CV, Heller GV, Bateman TM. et al . A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction.  J Nucl Cardiol. 2009;  16 714-725
  • 24 http://www.cardiarc.com
  • 25 http://www.digirad.com
  • 26 http://www.gehealthcare.com/euen/fun_img/products/nuclear_medicine/products/ alcyone_technology/index.html
  • 27 http://www.medical.siemens.com/siemens/en_US/gg_nm_FBAs/files/brochures/2008/ IQ_SPECT_Bro_2008.pdf
  • 28 http://www.spectrum-dynamics.com

Korrespondenzadresse

Prof. Dr. Frank M. Bengel

Johns Hopkins University

Russell H Morgan Department

0f Radiology

Division of Nuclear Medicine

601 N Caroline Street

JHOC 3225

21287 Baltimore Maryland

USA

Phone: +1/410/955 8994

Fax: +1/443/287 2933

Email: fbengel1@jhmi.edu

    >