Planta Med 2011; 77(7): 698-704
DOI: 10.1055/s-0030-1250516
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Appraisal of the Antichemotactic Activity of Flavonoids on Polymorphonuclear Neutrophils

Edna Sayuri Suyenaga 1 , 2 , Eduardo Luis Konrath1 , Roger Remy Dresch1 , Miriam Anders Apel1 , José Angelo Zuanazzi1 , Célia Gervásio Chaves1 , Amélia Teresinha Henriques1
  • 1Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
  • 2Centro Universitário FEEVALE, Instituto de Ciências da Saúde, Curso em Ciências Farmacêuticas, Novo Hamburgo, RS, Brazil
Further Information

Publication History

received March 16, 2010 revised October 1, 2010

accepted October 8, 2010

Publication Date:
05 November 2010 (online)

Abstract

Flavonoids are polyphenols that are ubiquitous in plants and frequently consumed in the diet. They are suggested to have many beneficial actions on human health, including anti-inflammatory activity. Their properties have been studied in a number of cell types, but little is known about their effects on neutrophil biology. Consequently, we selected 25 flavonoids with different structural features to evaluate their in vitro inhibition of rat polymorphonuclear neutrophil (PMN) chemotaxis, employing a modified Boyden chamber. Migratory activity was measured towards a chemotactic stimulant, formyl-Met-Leu-Phe or lipopolysaccharide. Furthermore, the cytotoxic effect of flavonoids on PMNs was determined by the release of cytosolic lactate dehydrogenase (LDH). Ten flavonoids significantly retarded the migration of PMNs with at least one of the concentrations tested in a range between 0.625 and 100 µM; the best antichemotactic agents were flavone, flavonol, quercetin and rutin. None of the flavanones evaluated presented any significant inhibition of migration in this assay. Our findings indicated that non-hydroxylated flavones possess a better antichemotactic activity when compared to flavones with hydroxy groups. The presence of a sugar moiety in rutin did not produce any increase in this effect, when compared to the respective aglycone analogue. Finally, none of the flavonoids exhibited cell toxicity and for many of these flavonoids this is the first report of the inhibition of PMN chemotaxis.

References

  • 1 Havsteen B H. The biochemistry and medical significance of the flavonoids.  Pharmacol Ther. 2002;  96 67-202
  • 2 Lin J K, Weng M S. Flavonoids as nutraceuticals. Grotewold E The science of flavonoids. Columbus; Springer 2006: 213-238
  • 3 Price K R, Rhodes M J C. Analysis of the major flavonol glycosides present in four varieties of onion (Allium cepa) and changes in composition resulting from autolysis.  J Sci Food Agric. 1997;  74 331-339
  • 4 Rotelli A E, Guardia T, Juárez A O, de la Rocha N E, Pelzer L E. Comparative study of flavonoids in experimental models of inflammation.  Pharmacol Res. 2003;  48 601-606
  • 5 Nair M P, Mahajan S, Reynolds J L, Aalinkeel R, Nair H, Schwartz S A. The flavonoid quercetin inhibits pro-inflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-κβ system.  Clin Vaccine Immunol. 2006;  19 319-328
  • 6 Speroni E, Cervellati R, Costa S, Guerra M C, Utan A, Govoni P. Effects of differential extraction of Verbena officinalis on rat models of inflammation, cicatrization and gastric damage.  Planta Med. 2007;  73 227-235
  • 7 Entschladen F, Drell T L, Lang K, Masur K, Palm D, Bastian P. Analysis methods of human cell migration.  Exp Cell Res. 2005;  307 418-426
  • 8 Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes.  J Exp Med. 1962;  115 453-466
  • 9 Zigmond S H, Hirsch J G. Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis.  J Cell Biol. 1981;  89 585-592
  • 10 Selloum L, Bouriche H, Tigrine C, Boudoukha C. Anti-inflammatory effect of rutin on rat paw oedema, and on neutrophils chemotaxis and degranulation.  Exp Toxicol Pathol. 2003;  54 313-318
  • 11 Cao G, Sofic E, Prior R L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships.  Free Radic Biol Med. 1997;  22 749-760
  • 12 Proteggente A R, Basu-Modak S, Kuhnle G, Gordon M J, Youdim K, Tyrrell R. Hesperetin glucuronide, a photoprotective agent arising from flavonoid metabolism in human skin fibroblasts.  Photochem Photobiol. 2003;  78 256-261
  • 13 Meotti F C, Luiz A P, Pizzolatti M G, Kassuya C A L, Calixto J B, Santos A R S. Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the L-arginine-nitric oxide and protein kinase C pathways.  J Pharmacol Exp Ther. 2006;  316 789-796
  • 14 Willain-Filho A, Cechinel-Filho V, Olinger L, Souza M M. Quercetin: further investigation of its antinociceptive properties and mechanisms of action.  Arch Pharmacol Res. 2008;  31 713-721
  • 15 Hämäläinen M, Nieminen R, Vuorela P, Heinonem M, Moilanen E. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit stat-1 and nf-κb activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only nf-κb activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages.  Mediators Inflamm. 2007;  2007 45673
  • 16 Loke W M, Proudfoot J M, Stewart S, McKinley A J, Needs P W, Kroon P A. Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: lack of association between antioxidant and lipoxygenase inhibitory activity.  Biochem Pharmacol. 2008;  75 1045-1053
  • 17 Siess M H, Leclerc J, Canivenc-Lavier M C, Rat P, Suschetet M. Heterogenous effects of natural flavonoids on monooxygenase activities in human and rat liver microsomes.  Toxicol Appl Pharmacol. 1995;  130 73-78
  • 18 Odontuya G, Hoult J R S, Houghton P J. Structure–activity relationship for anti-inflammatory effect of luteolin and its derived glycosides.  Phytother Res. 2005;  19 782-786
  • 19 Tapas A R, Sakarkar D M, Kakde R B. Flavonoids as nutraceuticals: a review.  Trop J Pharm Res. 2008;  7 1089-1099
  • 20 Rioja I, Ubeda A, Terencio M C, Guillen I, Riguera R, Quintela J M. An anti-inflammatory ditriazine inhibiting leukocyte functions and expression of inducible nitric oxide synthase and cyclo-oxygenase-2.  Eur J Pharmacol. 2000;  397 207-217
  • 21 Simões-Pires C A, Farias F, Marston A, Queiroz E F, Chaves C G, Henriques A T. Indole monoterpenes with antichemotactic activity from Psychotria myriantha: chemotaxonomic significance.  Nat Prod Commun. 2006;  12 1101-1106
  • 22 Dresch R R, Zanetti G D, Lerner C, Mothes B, Trindade V M T, Henriques A T. ACL-I, a lectin from the marine sponge Axinella corrugata: isolation, characterization and chemotactic activity.  Comp Biochem Physiol C. 2008;  148 23-30
  • 23 Kenny M T, Balistreri F J, Torney H L. Flavonoid modulation of murine neutrophil cytokinesis.  Immunopharmacol Immunotoxicol. 1990;  12 527-541
  • 24 de la Puerta R, Forder R A, Hoult J R S. Inhibition of leukocyte eicosanoid generation and radical scavenging activity by gnaphalin, a lipophilic flavonol isolated from Helichrysum picardii.  Planta Med. 1999;  65 507-511
  • 25 Mascolo N, Pinto A, Capasso F. Flavonoids, leukocyte migration and eicosanoids.  J Pharm Pharmacol. 1988;  40 293-295
  • 26 Geraets L, Moonen H J J, Brauers K, Gottschalk R W H, Wouters E F M, Bast A. Flavone as PARP-1 inhibitor: its effect on lipopolysaccharide induced gene-expression.  Eur J Pharmacol. 2007;  573 241-248
  • 27 Hwang T-L, Yeh S-H, Leu Y-L, Chern C-Y, Hsu H-C. Inhibition of superoxide anion and elastase release in human neutrophils by 30-isopropoxychalcone via a cAMP-dependent pathway.  Br J Pharmacol. 2006;  148 78-87
  • 28 Gardai S J, Whitlock B B, Xiao Y Q, Bratton D B, Henson P M. Oxidants inhibit ERK/MAPK and prevent its ability to delay neutrophil apoptosis downstream of mitochondrial changes and at the level of XIAP.  J Biol Chem. 2004;  279 44695-44703
  • 29 Wätjen W, Michels G, Steffan B, Niering P, Chovolou Y, Kampkötter A, Tran-Thi Q-A, Proksch P, Kahl R. Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis.  J Nutr. 2005;  135 525-531
  • 30 Grotewold E. The science of flavonoids. Columbus; Springer 2006: 239-268
  • 31 Arts M J, Haenen G R, Voss H P, Bast A. Masking of antioxidant capacity by the interaction of flavonoids with protein.  Food Chem Toxicol. 2001;  39 787-791

Dr. Roger Remy Dresch

Programa de Pós-Graduação em Ciências Farmacêuticas
Faculdade de Farmácia
Universidade Federal do Rio Grande do Sul

Av. Ipiranga, 2752

90610-000, Porto Alegre, RS

Brazil

Phone: +55 51 33 08 52 58

Fax: +55 51 33 08 52 43

Email: rrdresch@gmail.com

    >