Planta Med 2011; 77(1): 16-21
DOI: 10.1055/s-0030-1250117
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Antitussive Effect of Naringin on Experimentally Induced Cough in Guinea Pigs

Sen Gao1 [*] , Peibo Li1 [*] , Hongliang Yang1 , Siqi Fang1 , Weiwei Su1
  • 1Guangzhou Quality R & D Center of Traditional Chinese Medicine, School of Life Science, Sun Yat-Sen University, Guangzhou, PR China
Further Information

Publication History

received February 1, 2010 revised June 7, 2010

accepted June 16, 2010

Publication Date:
19 July 2010 (online)

Abstract

The mechanism of action of naringin has been investigated in different models of experimentally induced cough in guinea pigs. In contrast to codeine phosphate (6 mg/kg, intravenous administration [i. v.]), naringin (15, 30, and 60 mg/kg, i. v.) had no central antitussive effect on cough elicited by electrical stimulation of the superior laryngeal nerve. Naringin (0.5, 1.0, and 2.0 µmol) could not prevent the cough reflex induced by stimulation of the trachea after intracerebroventricular injection (i. c. v.), while codeine phosphate (0.5 µmol) was highly effective. Further characterizing the peripheral mechanism of naringin, we found that its effect (50 mg/kg, i. v.) was not affected by the depletion of sensory neuropeptides, whereas levodropropizine (10 mg/kg, i. v.) lost its capacity to prevent cough in the capsaicin-desensitized guinea pig. Furthermore, pretreatment with glibenclamide (10 mg/kg, intraperitoneal [i. p.]) significantly reduced the antitussive effect of pinacidil (5 mg/kg, subcutaneous [s. c.]), but could not antagonize the antitussive effect of naringin (30 mg/kg, s. c.). Our present results suggest that naringin is not a central antitussive drug. And naringin does not exert its peripheral antitussive effect through either the sensory neuropeptides system or the modulation of ATP-sensitive K+ channels.

References

  • 1 Reynolds S M, Mackenzie A J, Spina D, Page C P. The pharmacology of cough.  Trends Pharmacol Sci. 2004;  25 569-576
  • 2 Karlsson J A, Fullerb R W. Pharmacological regulation of the cough reflex–from experimental models to antitussive effects in man.  Pulm Pharmacol Ther. 1999;  12 215-228
  • 3 Burt C W, Schappert S M. Ambulatory care visits to physician offices, hospital outpatient departments, and emergency departments: United States, 1999–2000.  Vital Health Stat. 2004;  13 1-70
  • 4 Bolser D C. Mechanisms of action of central and peripheral antitussive drugs.  Pulm Pharmacol. 1996;  9 357-364
  • 5 Dicpinigaitis P V. Current and future peripherally-acting antitussives drugs.  Respir Physiol Neurobiol. 2006;  152 356-362
  • 6 Xu F Z, Chen C, Zhang Y H, Ruan H L, Pi H F, Zhang P, Wu J Z. Synthesis and antitussive evaluation of verticinone-cholic acid salt, a novel and potential cough therapeutic agent.  Acta Pharmacol Sin. 2007;  28 1591-1596
  • 7 Chinese Pharmacopoeia Commission .Pharmacopoeia of the People's Republic of China, Part 1. Beijing; The Chemical Industry Publishing House 2005: 51
  • 8 Lambev I, Krushkov I, Zheliazkov D, Nikolov N. Antiexudative effect of naringin in experimental pulmonary edema and peritonitis.  Eksp Med Morfol. 1980;  19 207-212
  • 9 Kroyer G. The antioxidant activity of citrus fruit peels.  Z Ernahrungswiss. 1986;  25 63-69
  • 10 Martín M J, Marhuenda E, Pérez-Guerrero C, Franco J M. Antiulcer effect of naringin on gastric lesions induced by ethanol in rats.  Pharmacology. 1994;  49 144-150
  • 11 Su W W, Wang Y G, Fang T Z, Peng W, Wu Z. Uses of naringenin, naringin and salts thereof as expectorants in the treatment of cough, and compositions thereof. European Patent 1591123. 2009
  • 12 Li P B, Ma Y, Wang Y G, Su W W. Experimental studies on antitussive, expectorant and antiasthmatic effects of extract from Citrus grandis var. tomentosa.  China J Chin Mater Med. 2006;  16 1350-1352
  • 13 Ishii R, Furuta M, Hashimoto M, Naruse T, Gallico L, Ceserani R. Effects of moguisteine on the cough reflex induced by afferent electrical stimulation of the superior laryngeal nerve in guinea pigs.  Eur J Pharmacol. 1998;  362 207-212
  • 14 Baluk P, Nadel J A, McDonald D M. Substance P-immunoreactive sensory axons in the rat respiratory tract: a quantitative study of their distribution and role in neurogenic inflammation.  J Comp Neurol. 1992;  319 586-598
  • 15 Das R M, Jeffery P K, Widdicombe J G. Experimental degeneration of intra-epithelial nerve fibres in cat airways.  J Anat. 1979;  128 259-263
  • 16 Lavezzo A, Melillo G, Clavenna G, Omini C. Peripheral site of action of levodropropizine in experimentally-induced cough: role of sensory neuropeptides.  Pulm Pharmacol. 1992;  5 143-147
  • 17 Kamei J, Iwamoto Y, Misawa M, Kasuya Y. The antitussive effect of morphine is insensitive to ATP-sensitive potassium channel blocker.  Res Commun Subst Abuse. 1992;  13 341-344
  • 18 Morita K, Kamei J. Involvement of ATP-sensitive K+ channels in the antitussive effect of moguisteine.  Eur J Pharmacol. 2000;  395 161-164
  • 19 Morita K, Onodera K, Kamei J. Inhaled pinacidil, an ATP-Sensitive K+ channel opener, and moguisteine have potent antitussive effects in guinea pigs.  Jpn J Pharmacol. 2002;  89 171-175
  • 20 Morikawa T, Gallico L, Widdicombe J. Actions of moguisteine on cough and pulmonary rapidly adapting receptor acitivity in the guinea pig.  Pharmacol Res. 1997;  35 113-118
  • 21 Chaplan S R, Bach F W, Pogrel J W, Chung J M, Yaksh T L. Quantitative assessment of tactile allodynia in the rat paw.  J Neurosci Methods. 1994;  53 55-63
  • 22 Yagi Y, Kuwahara M, Nanji A, Birumachi J, Nishibata R, Mikami H, Tsubone H. The difference in citric acid-induced cough in congenitally bronchial-hypersensitive (BHS) and bronchial- hyposensitive (BHR) guinea pigs.  Exp Anim. 2001;  50 371-378
  • 23 Domenjoz R. Zur Auswertung hustenstillender Arzneimittel.  Arch Exp Path Pharmakol. 1952;  215 19-24
  • 24 Mackenzie A J, Spina D, Page C P. Models used in the development of antitussive drugs.  Drug Discov Today Dis Models. 2004;  1 297-302
  • 25 Gallico L, Borghi A, Dalla Rosa C, Ceserani R, Tognella S. Moguisteine: a novel peripheral non-narcotic antitussive drug.  Br J Pharmacol. 1994;  112 795-800
  • 26 Mazzone S B. An overview of the sensory receptors regulating cough.  Cough. 2005;  1 1-9
  • 27 Widdicombe J. Neuroregulation of cough: implications for drug therapy.  Curr Opin Pharmacol. 2002;  2 256-263
  • 28 Gamse R, Wax A, Zigmond R E, Leeman S E. Immunoreactive substance P in sympathetic ganglia: distribution and sensitivity towards capsaicin.  Neuroscience. 1981;  6 437-441
  • 29 Jancsó G, Kiraly E, Jancsó-Gábor A. Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons.  Nature. 1977;  270 741-743
  • 30 Black J L, Barnes P J. Potassium channels and airway function: new therapeutic prospects.  Thorax. 1990;  45 213-218
  • 31 Poggioli R, Benelli A, Arletti R, Cavazzuti E, Bertolini A. Antitussive effect of K+ channel openers.  Eur J Pharmacol. 1999;  371 39-42

1 These authors contributed equally to this work.

Dr. Weiwei Su

Guangzhou Quality R & D Center of Traditional Chinese Medicine
School of Life Science
Sun Yat-Sen University

135 Xingangxi Road

510275 Guangzhou

PR China

Phone: + 86 20 84 11 08 08

Fax: + 86 20 84 11 23 98

Email: lsssww@126.com

    >