
Abstract
!

Natural products can exhibit many beneficial ef-
fects on human health. As far as cancer is con-
cerned, naturally occurring compounds have
been reported to prevent tumorigenesis and also
to suppress the growth of established tumors. As
cancer cells have evolved multiple mechanisms to

resist the induction of programmed cell death
(apoptosis), the modulation of apoptosis signaling
pathways by natural compounds has been dem-
onstrated to constitute a key event in these anti-
tumor activities. This review presents some ex-
amples of how apoptosis pathways are targeted
by selected naturally occurring agents and how
these events can be exploited for cancer therapy.
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Introduction
!

Over the last decades, natural compounds have
attracted considerable attention as cancer che-
mopreventive agents and also as cancer thera-
peutics [1]. Among their various biological activ-
ities, natural products can modulate apoptosis
signaling pathways. Apoptosis or programmed
cell death is an evolutionary highly conserved in-
trinsic death program that plays a key role in
maintaining tissue homeostasis during develop-
ment and in adult life [2]. Consequently, too little
apoptosis can promote tumorigenesis even with-
out an increase in proliferation [3]. Evasion of
apoptosis is a characteristic feature of human
cancers that promotes tumor formation and pro-
gression [3,4]. Additionally, the inability of most
cancers to undergo apoptosis in response to ap-
propriate stimuli is a key cause of treatment fail-
ure and presents one of the major, yet unsolved
problems in oncology [3,4]. Therefore, new con-
cepts are required to overcome cancer resistance
to conventional treatment approaches. Since nat-
ural compounds can modulate apoptosis path-
ways that are frequently blocked in human can-
cers, these compounds may provide novel oppor-
tunities for cancer drug development.
Fulda S.
Core Apoptosis Signal Transduction
Pathways
!

Two major apoptosis pathways, i.e., the receptor
(extrinsic) pathway and the mitochondrial (in-
trinsic) pathway, eventually result in the activa-
tion of caspases, a family of enzymes that act as
death effector molecules in various forms of cell
death [5,6]. In the receptor pathway, ligation of
death receptors of the tumor necrosis factor
(TNF) receptor superfamily, for example, CD95
(APO-1/Fas) or TNF-related apoptosis inducing
ligand (TRAIL) receptors, by their cognate natural
ligands or by agonistic antibodies initiates recep-
tor oligomerization followed by the recruitment
of adaptor molecules such as FADD and caspase-
8 to the activated death receptors leading to the
activation of caspase-8 [7]. Once activated, cas-
pase-8 either directly cleaves and thereby acti-
vates effector caspase-3 or alternatively, cleaves
Bid into tBid [8,9]. Bid is a BH3-only protein of
the Bcl-2 family, which upon cleavage translo-
cates as tBid to mitochondria to stimulate mito-
chondrial outer membrane permeabilization [9].
Thus, Bid links the receptor to the mitochondrial
pathway and can initiate a mitochondrial amplifi-
cation loop upon its caspase-mediated proteolytic
processing [9]. Initiation of the mitochondrial (in-
trinsic) pathway of apoptosis constitutes a point
of no return in various models of apoptosis, even-
tually resulting in the activation of caspases [10].
In the mitochondrial pathway, the release of mi-
Modulation of Apoptosis… Planta Med 2010; 76: 1075–1079
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tochondrial intermembrane space proteins such as cytochrome c
or second mitochondria-derived activator of caspase (Smac)/di-
rect IAP binding protein with low pI (DIABLO) into the cytosol
triggers a common prefinal stage of apoptosis that is character-
ized by the activation of effector caspases [11]. To this end, cyto-
chrome c promotes caspase-3 activation via the formation of the
apoptosome complex that contains besides cytochrome c also
Apaf-1 and caspase-9 and results in the activation of caspase-9
and subsequently caspase-3 [11]. Smac/DIABLO promotes activa-
tion of caspases-3, -7 and -9 by binding to and antagonizing “in-
hibitor of apoptosis” (IAP) proteins [11]. IAP proteins are a family
of endogenous caspase inhibitors and comprise eight human
analogues, including XIAP, c-IAP1, c-IAP2, survivin and livin/mel-
anoma-IAP (ML‑IAP) [12].
There are various intervention points that control cell death
pathways, since inappropriate induction of apoptosis may have
detrimental effects on the cellʼs survival [3]. For example, pro-
and anti-apoptotic proteins of the Bcl-2 family play an important
role in the regulation of the mitochondrial pathway [9]. The anti-
apoptotic Bcl-2 family members comprise, e.g., Bcl-2, Bcl-XL and
Mcl-1, while the multidomain proteins Bax and Bak and BH3 do-
main-only proteins such as Bid, Bim, Noxa and Puma belong to
the pro-apoptotic molecules [9]. The ratio of anti-apoptotic ver-
sus pro-apoptotic Bcl-2 family proteins rather than the expres-
sion of one single familymember is considered to control apopto-
sis sensitivity. These anti-apoptotic control points that prevent
accidental cell death under physiological conditions are often de-
regulated in cancers and may confer drug resistance. Besides ap-
optosis, several non-apoptotic modes of cell death have also been
identified in recent years, including necrosis, autophagy or mi-
totic catastrophe [13].
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Examples of Natural Compounds that Induce
Apoptosis in Cancer Cells (l" Table 1, Fig. 2)
!

Betulinic acid
Betulinic acid [3β-hydroxy-lup-20(29)-en-28-oic acid] is a pen-
tacyclic triterpenoid, which naturally occurs, for example, in the
bark of white birch trees and has been identified to stimulate the
mitochondrial apoptosis pathway preferentially in cancer cells
[14–16]. In a cell-free system, betulinic acid has been demon-
strated to directly cause mitochondrial outer membrane perme-
abilization and cytochrome c release in a Bcl-2 or Bcl-XL-depen-
dent manner, yet independently of caspases [14,15,17,18]. Betu-
Compound Target/Mode of action

α‑TOS Ubiquinone-binding sites in respiratory complex II

ATRA ANT ligand

Betulinic acid PTPC

CD437 PTPC

Gossypol (AT-101) Inhibitor of Bcl-2, Bcl-XL, Bcl-W, Mcl-1

2-Methoxyestradiol SOD inhibition

Methyl jasmonate Interferes with HK2/VDAC interaction

PEITCs ROS regulator (GSH depletion, GPX inhibition)

Resveratrol F1-ATPase

Abbreviations: α‑TOS, α-tocopheryl succinate; ANT, adenine nucleotide translocase; ATRA, a

tyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid; GPX, glutathione peroxidase; GSH, reduc

eral benzodiazepine receptor; PEITCs, phenyl ethyl isothiocyanates; PTPC, permeability trans

species; SOD, superoxide dismutase; VDAC, voltage-dependent anion channel

Fulda S. Modulation of Apoptosis… Planta Med 2010; 76: 1075–1079
linic acid was also reported in various models to induce apoptosis
in a p53-independent fashion, including chemotherapy-refactory
cases [15,19–24], indicating that betulinic acid may bypass some
types of drug resistance.

Resveratrol
Resveratrol (l" Fig. 1) is another natural compound that is present
in several dietary items, e.g., in grapes and red wine [25]. Chemi-
cally, resveratrol belongs to the group of polyphenolic phytoalex-
ins [25]. Resveratrol has been described to interfere with mito-
chondrial functions by inhibiting mitochondrial ATP synthesis
through its binding to F1-ATPase [25]. In addition, resveratrol
can antagonize anti-apoptotic proteins that prevent the induc-
tion of apoptosis in cancer cells. For example, resveratrol has
been reported to induce p53-independent upregulation of p21,
p21-triggered cell cycle arrest and subsequently cell cycle-de-
pendent depletion of the anti-apoptotic protein survivin, thereby
sensitizing cancer cells to TRAIL-induced apoptosis [26]. Besides
survivin, resveratrol has also been demonstrated to suppress ex-
pression levels of additional anti-apoptotic proteins, for example,
Bcl-xL andMcl-1 [27]. The antitumor activities of resveratrol have
also been linked to its ability to interfere with the phosphatidyli-
nositol-3 kinase (PI-3K)/AKT and the MAPK pathways [28–31],
two key survival cascades that are frequently aberrantly activated
in human cancers [32]. To improve the targeting tomitochondria,
resveratrol has been coupled to the membrane-permeant lipo-
philic TPP cation [33]. Compared to the parent compound, mito-
chondria-targeted resveratrol derivatives, i.e., 4-triphenylphos-
phoniumbutyl-4′-O-resveratrol iodide, accumulate in mitochon-
dria and may provide the basis for the design of more selective
and potent resveratrol derivatives [33].

Vitamin E analogues
Vitamin E analogues, for example, α-tocopheryl succinate
(α‑TOS), have also been reported to selectively trigger mitochon-
drial apoptosis in tumor cells [34]. Recently, evidence has been
provided that α‑TOS directly interacts with both ubiquinone-
binding sites of the respiratory complex II, leading to the dis-
placement of ubiquinone from complex II and subsequently to
ROS generation [35]. α‑TOS not only targets cancer cells but also
endothelial cells [36], which may contribute to its potent antitu-
mor activity. Experiments performed in endothelial cells that
were depleted of mitochondrial DNA confirmed the key role of
the intrinsic apoptosis pathway to α‑TOS-mediated cytotoxicity
[36]. In addition to α‑TOS, a series of vitamin E analogues has
Table 1 Examples of apoptosis
targeting natural compounds.

References
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[25]

ll-trans-retinoic acid; CD437, 6-[3-(1-adaman-

ed glutathione; HK, hexokinase; PBR, periph-

ition pore complex; ROS, reactive oxygen
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Fig. 1 Examples of
structures of apoptosis
targeting natural com-
pounds. a CD437;
b gossypol; c resvera-
trol.

Fig. 2 Modulation of apoptosis pathways by natural compounds. The ex-
trinsic (death receptor) pathway is stimulated by ligation of death receptors
(DR) by their respective ligands, which leads to receptor trimerization, re-
cruitment of adaptor molecules (FADD) and activation of caspase-8. The
intrinsic (mitochondrial) pathway is initiated by the release of mitochon-
drial proteins such as cytochrome c or Smac into the cytosol. Natural com-
pounds modulate apoptosis signaling at various points, e.g., at mitochon-
dria by targeting the permeability transition pore complex (e.g., CD437,
betulinic acid), by interacting with the ubiquinone-binding sites in respira-
tory complex II (α‑TOS), as ANT ligand (ATRA), by suppression of IAP pro-
teins (resveratrol) or by inhibition of anti-apoptotic Bcl-2 proteins (gossypol,
resveratrol). See text for more details.
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been synthesized, e.g., a non-hydrolyzable ether-linked acetic ac-
id derivative of α‑TOH (i.e., α‑TEA) [37–39]. These derivatives
proved to harbor improved antitumor activity in some (but not
all) cancers compared to the parent compound [37–39]. Of spe-
cial interest is also the reported tumor selectivity of α‑TOS [40],
which has been linked to its ester structure.

BH3 mimetics
Gossypol (AT-101) (l" Fig. 1), a polyphenolic aldehyde that natu-
rally occurs in the cotton plant [41], has been demonstrated to si-
multaneously antagonize several anti-apoptotic Bcl-2 proteins,
which interfere withmitochondrial outer membrane permeabili-
zation, including Bcl-2, Bcl-XL, Bcl-W and Mcl-1 [42]. The deriva-
tive apogossypol has been described to exhibit superior antitu-
mor activity combined with reduced toxicity compared to gossy-
pol [43]. It is interesting to note that gossypol showed clinical ac-
tivity as monotherapy in a phase I trial for the treatment of pros-
tate cancer [44] and is currently being evaluated as mono- or
combination therapy in several malignancies.

Compounds targeting permeability transition
pore complex (PTPC)
The permeability transition pore complex (PTPC) is a highly dy-
namic supramolecular structure, which comprises the voltage-
dependent anion channel (VDAC) in the outer membrane, the pe-
ripheral benzodiazepine receptor (PBR, also known as TSPO,
translocator protein of 18 kDa) in the outer membrane, the ad-
enine nucleotide translocase (ANT) in the mitochondrial inner
membrane, hexokinase (HK), which interacts with the mitochon-
drial outer surface from the cytosol, and cyclophilin D, which is
localized in the mitochondrial matrix [10]. The sustained open-
ing of the PTPC coupled with the loss of interactions with HK fa-
vors the loss of the mitochondrial membrane potential leading to
an osmotic imbalance and swelling of themitochondrial matrix, a
phenomenon called mitochondrial permeability transition
(MPT) [10]. This causes the physical rupture of the outer mito-
chondrial membrane, since the surface area of the inner mem-
brane exceeds by far the surface area of the outer membrane
[10]. Components of the PTPC can be targeted by natural prod-
ucts, for example by retinoid-related compounds such as 6-[3-
(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid
(CD437) (l" Fig. 1) and all-trans-retinoic acid (ATRA). Of note,
these retinoids trigger ANT-dependent MPT and subsequently
apoptosis independent from their ability to bind to nuclear re-
ceptors [45–47].

ROS regulators
Agents that produce reactive oxygen species (ROS) can trigger
mitochondrial outer membrane permeabilization and apoptosis
by overwhelming the antioxidant defense of mitochondria and
hence causing excessive oxidative damage of mitochondria.
One such class of compounds are the dietary phenylethyl isothio-
cyanates (PEITCs), which inhibit the GSH antioxidant system by
conjugating GSH and by inhibiting glutathione peroxidase, lead-
Fulda S. Modulation of Apoptosis… Planta Med 2010; 76: 1075–1079
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ing to the production of ROS and subsequently to oxidative dam-
age-mediated mitochondrial apoptosis [48,49]. Some estrogen
derivatives, e.g., 2-methoxyestradiol, have been described to in-
duce cell death in cancer cells by blocking superoxide dismutase
(SOD), an enzyme of the antioxidant defense, thereby increasing
ROS generation [50,51].

Agents targeting aberrant metabolism
Deregulation of mitochondrial functions lies at the intersection
between the regulation of cell death events and metabolism
[52]. Indeed, metabolic reprogramming is increasingly being rec-
ognized as one of the hallmarks of human cancers [52]. Therefore,
molecules that are involved in the control of metabolic pathways
represent potential targets for the development of new anti-
cancer strategies. Despite high oxygen tension, cancer cells char-
acteristically have an increased glycolytic rate flow, which results
in enhanced production of lactate [53]. This phenomenon of aer-
obic glycolysis is also referred to as the “Warburg effect”, as it was
first described by Otto Warburg [54]. Hexokinase (HK), the rate-
limiting enzyme of glycolysis that catalyzes the conversion of glu-
cose to glucose 6-phosphate, is frequently overexpressed in hu-
man cancers and its two isoforms HK1 and HK2 are more tightly
bound to VDAC at the outer mitochondrial membrane in cancer
cells than in nonmalignant cells [52]. This couples residual ATP
production frommitochondria to the rate-limiting step of glycol-
ysis and further promotes the Warburg effect. HK has also been
described to exert anti-apoptotic functions by blocking the open-
ing of the permeability transition pore complex (PTPC) due to its
ability to bind VDAC [55].
Methyl jasmonate is a plant hormone that has been reported to
detach HK frommitochondria via direct interaction, thereby trig-
gering mitochondrial apoptosis [56]. Since HK is expressed at
high levels in many humanmalignancies, targeting HK bymethyl
jasmonate may provide a means to tackle abnormal metabolism
in cancer cells.
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Conclusions
!

Natural products of various chemical classes can exert many ben-
eficial effects on human health including the prevention of can-
cer as well as suppression of tumor growth. These chemopreven-
tive and antitumor activities are mediated, at least to a large ex-
tent, via the modulation of cell death pathways including apopto-
sis in cancer cells. There are multiple intervention points within
the apoptotic machinery that have been identified tomediate the
antitumor effects of natural compounds, depending on the spe-
cific agents. Natural products often exert pleiotropic effects, a
feature that may prove to be especially advantageous, as distinct
mechanisms of cell death evasion can be simultaneously targeted
in cancer cells. Further insights into the molecular mechanisms
that mediate the antitumor activities of natural products are ex-
pected to promote their development as chemopreventive agents
and cancer therapeutics in the ongoing battle against cancer.
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