Horm Metab Res 2010; 42(5): 311-317
DOI: 10.1055/s-0030-1249035
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Exendin-4 Protects Pancreatic Beta Cells from the Cytotoxic Effect of Rapamycin by Inhibiting JNK and p38 Phosphorylation

Y. Kawasaki1 , S. Harashima1 , M. Sasaki1 , E. Mukai1 , 2 , Y. Nakamura1 , N. Harada1 , K. Toyoda1 , A. Hamasaki1 , S. Yamane1 , C. Yamada1 , Y. Yamada1 , 3 , Y. Seino1 , 4 , N. Inagaki1 , 5
  • 1Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
  • 2Japan Association for the Advancement of Medical Equipment, Tokyo, Japan
  • 3Department of Endocrinology and Diabetes and Geriatric Medicine, Akita University School of Medicine, Akita, Japan
  • 4Kansai Electric Power Hospital, Osaka, Japan
  • 5CREST of Japan Science and Technology Cooperation (JST), Kyoto, Japan
Further Information

Publication History

received 19.09.2009

accepted 08.02.2010

Publication Date:
08 March 2010 (online)

Abstract

It has been reported that the immunosuppressant rapamycin decreases the viability of pancreatic beta cells. In contrast, exendin-4, an analogue of glucagon-like peptide-1, has been found to inhibit beta cell death and to increase beta cell mass. We investigated the effects of exendin-4 on the cytotoxic effect of rapamycin in beta cells. Incubation with 10 nM rapamycin induced cell death in 12 h in murine beta cell line MIN6 cells and Wistar rat islets, but not when coincubated with 10 nM exendin-4. Rapamycin was found to increase phosphorylation of c-Jun amino-terminal kinase (JNK) and p38 in 30 minutes in MIN6 cells and Wistar rat islets while exendin-4 decreased their phosphorylation. Akt and extracellular signal-regulated kinase (ERK) were not involved in the cytoprotective effect of exendin-4. These results indicate that exendin-4 may exert its protective effect against rapamycin-induced cell death in pancreatic beta cells by inhibiting JNK and p38 signaling.

References

  • 1 Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea.  Diabetes Care. 2005;  28 1083-1091
  • 2 Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP.  Gastroenterology. 2007;  132 2131-2157
  • 3 Li L, El-Kholy W, Rhodes CJ, Brubaker PL. Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis: role of protein kinase B.  Diabetologia. 2005;  48 1339-1349
  • 4 Yusta B, Baggio LL, Estall JL, Koehler JA, Holland DP, Li H, Pipeleers D, Ling Z, Drucker DJ. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress.  Cell Metab. 2006;  4 391-406
  • 5 Wang Q, Brubaker PL. Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice.  Diabetologia. 2002;  45 1263-1273
  • 6 Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis.  J Biol Chem. 2003;  278 471-478
  • 7 Brubaker PL, Drucker DJ. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system.  Endocrinology. 2004;  145 2653-2659
  • 8 Tews D, Lehr S, Hartwig S, Osmers A, Paslack W, Eckel J. Anti-apoptotic action of exendin-4 in INS-1 beta cells: comparative protein pattern analysis of isolated mitochondria.  Horm Metab Res. 2009;  41 294-301
  • 9 Bell E, Cao X, Moibi JA, Greene SR, Young R, Trucco M, Gao Z, Matschinsky FM, Deng S, Markman JF, Naji A, Wolf BA. Rapamycin has a deleterious effect on MIN-6 cells and rat and human islets.  Diabetes. 2003;  52 2731-2739
  • 10 Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N, Leibowitz G. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes.  Diabetes. 2008;  57 945-957
  • 11 Fujimoto S, Ishida H, Kato S, Okamoto Y, Tsuji K, Mizuno N, Ueda S, Mukai E, Seino Y. The novel insulinotropic mechanism of pimobendan: Direct enhancement of the exocytotic process of insulin secretory granules by increased Ca2+ sensitivity in beta-cells.  Endocrinology. 1998;  139 1133-1140
  • 12 Leist M, Gantner F, Bohlinger I, Germann PG, Tiegs G, Wendel A. Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest.  J Immunol. 1994;  153 1778-1788
  • 13 Webster AC, Lee VW, Chapman JR, Craig JC. Target of rapamycin inhibitors (sirolimus and everolimus) for primary immunosuppression of kidney transplant recipients: a systematic review and meta-analysis of randomized trials.  Transplantation. 2006;  81 1234-1248
  • 14 Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H, Houghton PJ. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1).  Mol Cell. 2003;  11 1491-1501
  • 15 Bachar E, Ariav Y, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G. Glucose amplifies fatty acid-induced endoplasmic reticulum stress in pancreatic beta-cells via activation of mTORC1.  PLoS One. 2009;  4 e4954
  • 16 Rincón M, Davis RJ. Regulation of the immune response by stress-activated protein kinases.  Immunol Rev. 2009;  228 212-224
  • 17 Lukowiak B, Vandewalle B, Riachy R, Kerr-Conte J, Gmyr V, Belaich S, Lefebvre J, Pattou F. Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe.  J Histochem Cytochem. 2001;  49 519-528
  • 18 Mandrup-Poulsen T. beta-cell apoptosis: stimuli and signaling.  Diabetes. 2001;  50 (S 01) S58-S63
  • 19 Ammendrup A, Maillard A, Nielsen K, Aabenhus Andersen N, Serup P, Dragsbaek Madsen O, Mandrup-Poulsen T, Bonny C. The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells.  Diabetes. 2000;  49 1468-1476
  • 20 Saldeen J, Lee JC, Welsh N. Role of p38 mitogen-activated protein kinase (p38 MAPK) in cytokine-induced rat islet cell apoptosis.  Biochem Pharmacol. 2001;  61 1561-1569
  • 21 Abdelli S, Ansite J, Roduit R, Borsello T, Matsumoto I, Sawada T, Allaman-Pillet N, Henry H, Beckmann JS, Hering BJ, Bonny C. Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure.  Diabetes. 2004;  53 2815-2823
  • 22 Ito T, Omori K, Rawson J, Todorov I, Asari S, Kuroda A, Shintaku J, Itakura S, Ferreri K, Kandeel F, Mullen Y. Improvement of canine islet yield by donor pancreas infusion with a p38MAPK inhibitor.  Transplantation. 2008;  86 321-329
  • 23 Noguchi H, Nakai Y, Matsumoto S, Kawaguchi M, Ueda M, Okitsu T, Iwanaga Y, Yonekawa Y, Nagata H, Minami K, Masui Y, Futaki S, Tanaka K. Cell permeable peptide of JNK inhibitor prevents islet apoptosis immediately after isolation and improves islet graft function.  Am J Transplant. 2005;  5 1848-1855
  • 24 Shimodahira M, Fujimoto S, Mukai E, Nakamura Y, Nishi Y, Sasaki M, Sato Y, Sato H, Hosokawa M, Nagashima K, Seino Y, Inagaki N. Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolism.  J Endocrinol. 2010;  204 37-46
  • 25 Inagaki N, Maekawa T, Sudo T, Ishii S, Seino Y, Imura H. c-Jun represses the human insulin promoter activity that depends on multiple cAMP response elements.  Proc Natl Acad Sci USA. 1992;  89 1045-1049
  • 26 Kemp DM, Habener JF. Insulinotropic hormone glucagon-like peptide 1 (GLP-1) activation of insulin gene promoter inhibited by p38 mitogen-activated protein kinase.  Endocrinology. 2001;  142 1179-1187

Correspondence

N. InagakiMD, PhD 

Department of Diabetes and Clinical Nutrition

Graduate School of Medicine

Kyoto University

54 Shogoin Kawahara-cho

Sakyo-ku

606-8507 Kyoto

Japan

Phone: +81/75/751 3560

Fax: +81/75/771 6601

Email: inagaki@metab.kuhp.kyoto-u.ac.jp

    >