Horm Metab Res 2010; 42(5): 299-306
DOI: 10.1055/s-0030-1248255
Review

© Georg Thieme Verlag KG Stuttgart · New York

Back to the Future: Revisiting Parathyroid Hormone and Calcitonin Control of Bone Remodeling

F. J. A. de Paula1 , C. J. Rosen1
  • 1Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, USA
Further Information

Publication History

received 15.10.2009

accepted 18.01.2010

Publication Date:
09 March 2010 (online)

Abstract

This review reflects on the past, present, and future of translational research on calcitropic hormones and bone metabolism. Calcitonin (CT) and parathormone (PTH) are complementary hormones involved in the acquisition and maintenance of bone mass and regulation of calcium metabolism. Early research demonstrated that these hormones could have an important role in the treatment of osteoporosis. Calcitonin was approved for this indication by the FDA more than two decades ago, and PTH gained regulatory approval for the treatment of osteoporosis nearly ten years ago. Unfortunately, basic research underlying the mechanism of action of these agents has lagged behind drug approval, and the role of these hormones in bone remodeling is still not firmly established. Moreover, research in bone biology shifted from these hormones to smaller molecules and paracrine regulators of skeletal remodeling. Although important, this development was somewhat unfortunate because without a clearer understanding of how calcitropic hormones work, we cannot be sure that they are being used optimally in the management of osteoporosis. In this review, we look at what is known about CT and PTH and the cells that they target, namely osteoblasts, osteoclasts, and osteocytes. We then identify gaps in knowledge and the research needed to fill them. The conduct of mechanistic studies may point to important factors, such as diurnal variation and dose responsiveness that would lead to improved treatment regimens. By reopening lines of basic and clinical investigation and applying those findings at the bedside, we hope to restart the cycle of translational research in this area.

References

  • 1 Torres PU. The need for reliable serum parathyroid hormone measurements.  Kidney Int. 2006;  70 240-243
  • 2 Lanske B, Razzaque MS. Vitamin D and aging: old concepts and new insights.  J Nutr Biochem. 2007;  18 771-777
  • 3 Copp DH, Cameron EC. Demonstration of a hypocalcemic factor (calcitonin) in commercial parathyroid extract.  Science. 1961;  134 2038
  • 4 Neher R, Riniker B, Maier R, Byfield PG, Gudmundsson TV, MacIntyre I. Human calcitonin.  Nature. 1968;  220 984-986
  • 5 Lerner UH. Deletions of genes encondig calcitonin/α-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptor in bone.  J Musculoskelet Neuronal Interact. 2006;  6 87-95
  • 6 Shinki T, Ueno Y, DeLuca HF, Suda T. Calcitonin is a major regulator for the expression of renal 25-hydroxyvitamin D3-1alpha-hydroxylase gene in normocalcemic rats.  Proc Natl Acad Sci USA. 1999;  96 8253-8258
  • 7 Chambers TJ, Chambers JC, Symonds J, Darby JA. The effect of human calcitonin on the cytoplasmic spreading of rat osteoclasts.  J Clin Endocrinol Metab. 1986;  63 1080-1085
  • 8 Wimalawansa SJ. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials.  Endoc Rev. 1996;  17 533-585
  • 9 Woodrow JP, Sharpe CJ, Fudge NJ, Hoff AO, Gagel RF, Kovacs CS. Calcitonin plays a critical role in regulating skeletal mineral metabolism during lactation.  Endocrinology. 2006;  147 4010-4021
  • 10 Davey RA, Turner AG, McManus JF, Maria-Chiu WS, Tjahyono F, Moore AJ, Atkins GJ, Anderson PH, Ma C, Glatt V, MacLean HE, Vincent C, Bouxsein M, Morris HA, Findlay DM, Zajac JD. Calcitonin receptor plays a physiological role to protect against hypercalcemia in mice.  J Bone Miner Res. 2008;  23 1182-1193
  • 11 Daripa M, Paula FJ, Rufino AC, Foss MC. Impact of congenital calcitonin deficiency due to dysgenetic hypothyroidism on bone mineral density.  Braz J Med Biol Res. 2004;  37 61-68
  • 12 Hurley DL, Tiegs RD, Wahner HW, Heath III H. Axial and appendicular bone mineral density in patients with long-term deficiency or excess of calcitonin.  N Engl J Med. 1987;  317 537-541
  • 13 Hoff AO, Catala-Lehnen P, Thomas PM, Priemel M, Rueger JM, Nasonkin I, Bradley A, Hughes MR, Ordonez N, Cote GJ, Amling M, Gagel RF. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene.  J Clin Invest. 2002;  110 1849-1857
  • 14 Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhim S, Galson DL, Zajac JD, Karsenty G. Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo.  J Cell Biol. 2004;  164 509-514
  • 15 Owan I, Ibaraki K. The role of calcitonin gene-related peptide (CGRP) in macrophages: the presence of functional receptors and effects on proliferation and differentiation into osteoclast-like cells.  Bone Miner. 1994;  24 151-164
  • 16 Cornish J, Callon KE, Lin CQ, Xiao CL, Gamble GD, Cooper GJ, Reid IR. Comparision of the effects of calcitonin gene-related peptide to osteoblasts increases bone density in mice.  J bone Miner Res. 1999;  14 1302-1309
  • 17 Gagel RF, Hoff AO, Huang SE, Cote GJ. Deletion of calcitonin/CGRP gene causes a profound cortical resorption phenotype in mice.  J Bone Miner Res. 2007;  22 S1-S35
  • 18 Huebner AK, Schinke T, Matthias P, Schilling S, Schilling AF, Emeson RB, Rueger JM, Amling M. Calcitonin deficiency in mice progressively results in high bone turnover.  J Bone Miner Res. 2006;  21 1924-1934
  • 19 PROOF Study Group . Chesnut III CH, Silverman S, Andriano K, Genant H, Gimona A, Harris S, Kiel D, LeBoff M, Maricic M, Miller P, Moniz C, Peacock M, Richardson P, Watts N, Baylink D. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the PROOF study.  Am J Med. 2000;  109 267-276
  • 20 Karsdal MA, Henriksen K, Arnold M, Christiansen C. Calcitonin: a drug of the past or for the future? Physiologic inhibition of bone resorption while sustaining osteoclast numbers improves bone quality.  BioDrugs. 2008;  22 137-144
  • 21 Mehta NM, Malootian A, Gilligan JP. Calcitonin for osteoporosis and bone pain.  Curr Pharm Des. 2003;  9 2659-2676
  • 22 Karsdal MA, Byrjalsen I, Riis BJ, Christiansen C. Optimizing bioavailability of oral administration of small peptides through pharmacokinetic and pharmacodynamic parameters: the effect of water and timing of meal intake on oral delivery of Salmon Calcitonin.  BMC Clin Pharmacol. 2008;  8 5
  • 23 Mustata G, Dihn SM. Approach to oral drug delivery for challenging molecules.  Crit Rev Ther Drug Carrier Syst. 2006;  23 111-135
  • 24 Wu SJ, Robinson JR. Transcellular and lipophilic complex-enhanced intestinal absorption of human growth hormone.  Pharm Res. 1999;  16 1266-1272
  • 25 Tankó LB, Bagger YZ, Alexandersen P, Devogelaer JP, Reginster JY, Chick R, Olson M, Benmammar H, Mindeholm L, Azria M, Christiansen C. Safety and efficacy of a novel salmon calcitonin (sCT) technology-based oral formulation in healthy postmenopausal women: acute and 3-month effects on biomarkers of bone turnover.  J Bone Miner Res. 2004;  19 1531-1538
  • 26 Karsdal MA, Byrjalsen I, Riis BJ, Christiansen C. Investigation of the diurnal variation in bone resorption for optimal drug delivery and efficacy in osteoporosis with oral calcitonin.  BMC Clin Pharmacol. 2008;  8 12
  • 27 Brown EM. The calcium-sensing receptor: physiology, pathophysiology and CaR-based therapeutics.  Subcell Biochem. 2007;  45 139-167
  • 28 Lanna CM, Paula FJ, Montenegro Jr RM, Moreira AC, Foss MC. Parathyroid hormone secretion in chronic human endogenous hypercortisolism.  Braz J Med Biol Res. 2002;  35 229-236
  • 29 Paula FJ, Lanna CM, Shuhama T, Foss MC. Effect of metabolic control on parathyroid hormone secretion in diabetic patients.  Braz J Med Biol Res. 2001;  34 1139-1145
  • 30 Jüppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski Jr LF, Hock J, Potts Jr JT, Kronenberg HM. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide.  Science. 1991;  254 1024-1026
  • 31 Anastasilakis AD, Efstathiadou Z, Plevraki E, Koukoulis GN, Slavakis A, Kita M, Avramidis A. Effect of exogenous intermittent recombinant human PTH 1–34 administration and chronic endogenous parathyroid hormone excess on glucose homeostasis and insulin sensitivity.  Horm Metab Res. 2008;  40 702-707
  • 32 Cha H, Jeong HJ, Jang SP, Kim JY, Yang DK, Oh JG, Park WJ. PTH accelerates decompensation following left ventricular hypertrophy.  Exp Mol Med. 2010;  42 61-68
  • 33 Rubin MR, Bilezikian JP, McMahon DJ, Jacobs T, Shane E, Siris E, Udesky J, Silverberg SJ. The Natural History of Primary Hyperparathyroidism with or without Parathyroid Surgery after 15 Years.  J Clin Endocrinol Metab. 2008;  93 3462-3470
  • 34 de Albuquerque Taveira AT, Fernandes MI, Galvão LC, Sawamura R, de Mello Vieira E, de Paula FJ. Impairment of bone mass development in children with chronic cholestatic liver disease.  Clin Endocrinol. 2007;  66 518-523
  • 35 Doga M, Mazziotti G, Bonadonna S, Patelli I, Bilezikian JP, Canalis E, Giustina A. Prevention and treatment of glucocorticoid-induced osteoporosis.  J Endocrinol Invest. 2008;  31 (S 07) 535-538
  • 36 Haagensen AL, Feldman HA, Ringelheim J, Gordon CM. Low prevalence of vitamin D deficiency among adolescents with anorexia nervosa.  Osteoporos Int. 2008;  19 289-294
  • 37 Oelzner P, Lehmann G, Eidner T, Franke S, Müller A, Wolf G, Hein G. Hypercalcemia in rheumatoid arthritis: relationship with disease activity and bone metabolism.  Rheumatol Int. 2006;  26 908-915
  • 38 Kajil H, Yamauchi M, Chihara K, Sugimoto T. Relationship between endogenous parathyroid hormone and bone metabolism/geometry in female patients treated with glucocorticoid.  Horm Metab Res. 2008;  40 60-65
  • 39 Reusch J, Ackermann H, Badenhoop K. Cyclic changes of vitamin D and PTH are primarily regulated by solar radiation: 5-Year analysis of a German (50° N) population.  Horm Metab Res. 2009;  41 402-407
  • 40 Tam CS, Heersche JN, Murray TM, Parsons JA. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration.  Endocrinology. 1982;  110 506-512
  • 41 Anastasilakis AD, Polyzos SA, Avramidis A, Papatheodorou A, Terpos E. Effect of strontium ranelate on lumbar spine bone mineral density in women with established osteoporosis previously treated with teriparatide.  Horm Metab Res. 2009;  41 559-562
  • 42 Kulkarni NH, Wei T, Kumar A, Dow ER, Stewart TR, Shou J, N’Cho M, Sterchi DL, Gitter BD, Higgs RE, Halladay DL, Engler TA, Martin TJ, Bryant HU, Ma YL, Onyia JE. Changes in osteoblast, chondrocyte, and adipocyte lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor.  J Cell Biochem. 2007;  102 1504-1518
  • 43 Rickard DJ, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta B, Stroup GB, Kumar S, Nuttall ME. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrowstromal cells.  Bone. 2006;  39 1361-1372
  • 44 Allan EH, Häusler KD, Wei T, Gooi JH, Quinn JM, Crimeen-Irwin B, Pompolo S, Sims NA, Gillespie MT, Onyia JE, Martin TJ. EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts.  J Bone Miner Res. 2008;  23 1170-1181
  • 45 Logue FC, Fraser WD, O’Reilly DS, Cameron DA, Kelly AJ, Beastall GH. The circadian rhythm of intact parathyroid hormone-(1–84): temporal correlation with prolactin secretion in normal men.  J Clin Endocrinol Metab. 1990;  71 1556-1560
  • 46 Fraser WD, Logue FC, Christie JP, Gallacher SJ, Cameron D, O’Reilly DS, Beastall GH, Boyle IT. Alteration of the circadian rhythm of intact parathyroid hormone and serum phosphate in women with established postmenopausal osteoporosis.  Osteoporos Int. 1998;  8 121-126
  • 47 Lobaugh B, Neelon FA, Oyama H, Buckley N, Smith S, Christy M, Leight Jr GS. Circadian rhythms for calcium, inorganic phosphorus, and parathyroid hormone in primary hyperparathyroidism: functional and practical considerations.  Surgery. 1989;  106 1009-1016
  • 48 Prank K, Nowlan SJ, Harms HM, Kloppstech M, Brabant G, Hesch RD, Sejnowski TJ. Time series prediction of plasma hormone concentration. Evidence for differences in predictability of parathyroid hormone secretion between osteoporotic patients and normal controls.  J Clin Invest. 1995;  95 2910-2919
  • 49 Silverberg SJ, Shane E, de la Cruz L, Segre GV, Clemens TL, Bilezikian JP. Abnormalities in parathyroid hormone secretion and 1,25-diydroxyvitamin D3 formation in women with osteoporosis.  N Engl J Med. 1989;  320 277-281
  • 50 Pereira LC, Pereira FA, Sá MF, Foss MC, dePaula FJ. Parathyroid hormone secretion in women in late menopause submitted to EDTA-induced hypocalcemia.  Maturitas. 2008;  59 91-94
  • 51 Hamilton JW, Jilka RL, MacGregor RR. Cleavage of parathyroid hormone to the 1–34 and 35–84 fragments by cathepsin D-like activityin bovine parathyroid gland extracts.  Endocrinology. 1983;  113 285-292
  • 52 Friedman PA, Goodman WG. PTH (1–84)/PTH (7–84): A balance of power.  Am J Physiol Renal Physiol. 2006;  290 F975-F984
  • 53 Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH.  Bone. 2007;  40 1434-1446
  • 54 Hock JM, Onyia JE, Miller B, Hulman J, Herring J, Chandrasekhar S, Harvey AK, Gunness M. Anabolic PTH targets proliferating cells of the primary spongiosa in young rats, and increases the number differentiating into osteoblasts.  J Bone Miner Res. 1994;  9 S412
  • 55 Schmidt IU, Dobnig H, Turner RT. Intermittent parathyroid hormone treatment increases osteoblast number, steady state messenger ribonucleic acid levels for osteocalcin, and bone formation in tibial metaphysis of hypophysectomized female rats.  Endocrinology. 1995;  136 5127-5133
  • 56 Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Robertson PK, Weistein RS, O’Brien CA, Manolagas SC, Jilka RL. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts: a putative explanation for why intermittent administration is needed for bone anabolism.  J Biol Chem. 2003;  278 50259-50272
  • 57 Krishnan V, Moore TL, Ma YL, Helvering LM, Frolik CA, Valasek KM, Ducy P, Geiser AG. Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling.  Mol Endocrinol. 2003;  17 423-435
  • 58 Rosen CJ. Insulin-like growth factor I and bone mineral density: Experience from animal models and human observational studies.  Best Pract Res Clin Endocrinol Metab. 2004;  18 423-435
  • 59 Wang Y, Nishida S, Boudignon BM, Burghardt A, Elalieh HZ, Hamilton MM, Majundar S, Halloran BP, Clemens TL, Bikle DD. IGF-I receptor is required for the anabolic actions of parathyroid Hormoneon Bone.  J Bone Miner Res. 2007;  22 1329-1337
  • 60 Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S. Evidence that anabolic effects of PTH on bone require IGF-I in growing mice.  Endocrinology. 2001;  142 4349-4356
  • 61 Yakar S, Brouxsein ML, Canalis E, Sun H, Glatt V, Gundberg C, Cohen P, Hwanq D, Boisclair Y, Leroith D, Rosen CJ. The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone.  J Endocrinol. 2006;  189 289-299
  • 62 Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families.  Endocr Rev. 1999;  20 345-357
  • 63 Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption – a hypothesis [letter].  Calcif Tissue Int. 1982;  34 311
  • 64 Rubin J, Ackert-Bicknell CL, Zhu L, Fan X, Murphy TC, Nanes MS, Marcus R, Holloway L, Beamer WG, Rosen CJ. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo.  J Clin Endocrinol Metab. 2002;  87 4273-4279
  • 65 Li X, Liu H, Qin L, Tamasi J, Bergenstock M, Shapses S, Feyen JHM, Notterman DA, Partridge NC. Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis.  J Biol Chem. 2007;  282 33086-33097
  • 66 Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC. Parathyroid Hormone Stimulates Osteoblastic Expression of MCP-1 to Recruit and Increase the Fusion of Pre/Osteoclasts.  J Biol Chem. 2007;  282 33098-33106
  • 67 Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, Garnero P, Bouxsein ML, Bilezikian JP, Rosen CJ. PaTH Study Investigators . The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis.  N Engl J Med. 2003;  349 1207-1215
  • 68 Winkler DG, Sutherland Mk, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist.  EMBO J. 2003;  22 6267-6276
  • 69 Kerachian MA, Séguin C, Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action.  J Steroid Biochem Mol Biol. 2009;  114 121-128
  • 70 Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL. Chronic elevation of parathyroid hormone in mice reduces expression of scherostin by osteocytes: A novel mechanism for hormonal control of osteoblastogenesis.  Endocrinology. 2005;  146 4577-4583
  • 71 Keller H, Kneissel M. SOST is a target gene for PTH in bone.  Bone. 2005;  37 148-158
  • 72 O’Brien CA, Plotkin LI, Galli C, Goelner JJ, Gortazar AR, Allen MR, Robling A, Brouxsein M, Schipani E, Turner CH, Jilka RL, Weinstein RS, Manolagas SC, Bellido T. Control of bone mass and remodeling by PTH receptor signaling in osteocytes.  PLoS One. 2008;  3 e2942

Correspondence

C. J. Rosen

Maine Medical Center Research Institute

81 Research Drive

Scarborough

ME 04074-7205

USA

Phone: +1/;207/8858100

Fax: +1/207/8858185

Email: rosenc@mmc.org

    >