Laryngorhinootologie 2010; 89: S1-S14
DOI: 10.1055/s-0029-1246123
Rhinologische Funktionen

© Georg Thieme Verlag KG Stuttgart · New York

Strömungssimulation und Klimatisierung in der Nase

Simulation and Air-conditioning in the NoseT. Keck1 , J. Lindemann2
  • 1Abteilung für Hals-, Nasen-, Ohrenheilkunde, Kopf-, Hals- und Plastische Gesichtschirurgie, Elisabethinen-Krankenhaus GmbH, Akademisches Lehrkrankenhaus der Medizinischen Universität Graz, Österreich
  • 2Universitäts-HNO-Klinik, Ulm
Further Information

Publication History

Publication Date:
29 March 2010 (online)

Zusammenfassung

Die Erwärmung und Befeuchtung der eingeatmeten Luft ist neben der Reinigung und Riechfunktion die zentrale Aufgabe der Nasenwege. Die optimale Konditionierung der Atemluft in der Nase soll einen unbeeinträchtigten alveolären Gasaustausch ermöglichen. Aufgrund der komplexen dreidimensionalen Struktur der Nasenhöhle und der schlechten Zugänglichkeit insbesondere tieferer Nasenabschnitte, sind in vivo Messungen des intranasalen Temperatur- und Wärmeaustausches anhand verschiedener Versuchsanordnungen der gesamten Nase technisch nicht realisierbar. Das Hauptproblem von intranasalen in vivo Messungen ist die eingeschränkte räumliche und zeitliche Auflösung. Es können nur Daten an einzelnen Stellen in der Nase erhoben werden. Eine exakte Untersuchung und Kartierung der Lufttemperatur, -feuchte und Mukosatemperatur innerhalb der gesamten Nase ist in vivo technisch nicht realisierbar, da unendlich viele Messungen während des Atemzyklus erforderlich wären und dies nur bis zu einem gewissen Grad durchführbar ist. Diese Schwierigkeiten mit in vivo Messungen haben in den letzten Jahren zu einer großen Zahl an numerischen Simulationsprojekten geführt, die ergänzend Informationen zur äußerst komplexen Funktion der Nasenwege liefern können. Generell können numerische Simulationen nur eingeschränkt und abhängig von den eingestellten Randbedingungen des Computermodells, z. B. realistisches Nasenmodell, Vorhersagen berechnen. Es handelt sich also immer um numerische Näherungen. Ziel dieses Referates ist die Zusammenschau der messtechnischen Erkenntnisse der nasalen Klimatisierung in vivo, der Informationen aus den numerischen Simulationen und speziell der Wissensstand bezüglich des Einflusses von chirurgischen Eingriffen an der Nase und den Nasennebenhöhlen auf die Klimatisierungsfunktion der Nase.

Abstract

Simulation and Air-conditioning in the Nose

Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid dessication and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible to a restricted extent, only providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations only calculate predictions in a computational model, e. g. realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this report is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning.

Literatur

  • 1 Calderón MA, Devalia JL, Davies RJ. Biology of nasal epithelium.. In: Mygind N, Lildholdt T (eds) Nasal polyposis. An inflammatory disease and its treatment. Munksgaard, Kopenhagen; 1997: 31-43
  • 2 Gwaltney JM, Jones JG, Kennedy DW. Medical management of sinusitis: educational goals and management guidelines. The International Conference on Sinus Disease.  Ann Otol Rhinol Laryngol. 1995;  ((Suppl)) 16722-16730
  • 3 Ingelstedt S. Studies on the conditioning of air in the respiratory tract.  Acta Otolaryngol. 1956;  ((Suppl 131)) 1-80
  • 4 Heyder J, Armbruster L, Gebhart J, Grein E, Stahlhofen W. Total deposition of aerosol particles in the human respiratory tract for nose and mouth breathing.  J Aerosol Sci. 1975;  6 311-328
  • 5 Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm.  J Aerosol Sci. 1986;  17 811-825
  • 6 Deitmer T. Moderne Funktionsdiagnostik der Nase und der Nasennebenhöhlen.  Eur Arch Otorhinolaryngol. 1996;  ((Suppl I)) 1-71
  • 7 Keck T, Leiacker R, Schick M, Rettinger G, Kühnemann S. Temperatur- und Feuchteprofil der Nase vor und nach Schleimhautabschwellung durch Xylometazolin.  Laryngorhinootologie. 2000;  79 749-752
  • 8 Stuart BO. Deposition and clearance of inhaled particles.  Environ Health Persp. 1984;  55 369-390
  • 9 Cole P. Recordings of respiratory air temperature.  J Laryngol Otol. 1954;  68 295-307
  • 10 Cole P. Respiratory mucosal vascular responses, air conditioning and thermoregulation.  J Laryngol Otol. 1954;  68 613-622
  • 11 Ingelstedt S. Studies on the conditioning of air in the respiratory tract.  Acta Otolaryngol. 1956;  ((Suppl 131)) 1-80
  • 12 Ingelstedt S, Ivstam B. Study on the humidifying capacity of the nose.  Acta Otolaryngol. 1951;  49 286-290
  • 13 Rouadi P, Baroody FM, Abbott D, Naureckas E, Solway J, Nacleiro RM. A technique to measure the ability of the human nose to warm and humidify air.  J Appl Physiol. 1999;  87 400-406
  • 14 Cheng YS, Hansen GK, Su YF, Yeh HC, Morgan KT. Deposition of ultrafine aerosols in rat nasal molds.  Toxicol Appl Pharmacol. 1990;  106 222-233
  • 15 Cheng YS, Yeh HC, Swift DL. Aerosol deposition in human nasal airway for particles 1 nm to 20 μm: a model study.  Radiat Prot Dosimetry. 1991;  38 41-47
  • 16 Mollier R. Das ix-Diagramm für Dampfluftgemische.  Z Ver Dt Ing. 1929;  73 1009-1013
  • 17 Weber D. Das Mollier-Diagramm.. In: Weber D , Hrsg. Technische Feuchtemessung. Vulkan Verlag, Essen; 1995: 26-37
  • 18 Kern EB. Surgical approaches to abnormalities of the nasal valve.  Rhinology. 1978;  16 165-189
  • 19 Bruintjes TD, van Olphen AF, Hillen B, Huizing EH. A functional anatomic study of the relationship of the nasal cartilages and muscles to the nasal valve area.  Laryngoscope. 1998;  108 1025-1032
  • 20 Shaida AM, Kenyon GS. The nasal valves: changes in anatomy and physiology in normal subjects.  Rhinology. 2000;  38 7-12
  • 21 Widdicombe J. Microvascular anatomy of the nose.  Allergy. 1997;  52 ((Suppl 40)) 7-11
  • 22 Lang J. Nasal cavity.. In: Lang J (ed) Clinical anatomy of the nose, nasal cavity and paranasal sinuses. Thieme Medical Publishers, New York; 1989: 31-55
  • 23 Swift DL, Proctor DF. Access of air to the respiratory tract.. In: Brain JD, Proctor DF, Reid LM (eds) Respiratory defence mechanisms. Marcel Dekker, Inc, New York; 1977: 63-93
  • 24 Mygind N, Pedersen M, Nielsen MH. Morphology of the upper airway epithelium.. In: Proctor DF, Andersen IB (eds) The nose. Upper airway physiology and the atmospheric environment. Elsevier Biomedical Press, Amsterdam New York Oxford; 1982: 71-97
  • 25 Kaliner MA, Shelhamer JH, Borson DB, Patow CA, Marom Z, Nadel JA. Respiratory mucus.. In: Kaliner MA, Barnes PJ (eds) The airways. Neural control in health and disease. Marcel Dekker, Inc., New York, Basel; 1988: 575-593
  • 26 Proctor DF. The mucociliary system.. In: Proctor DF, Andersen IB (eds) The nose. Upper airway physiology and the atmospheric environment. Elsevier Biomedical Press, Amsterdam New York Oxford; 1982: 245-278
  • 27 Basbaum CB. Regulation of airway secretory cells.  Clin Chest Med. 1986;  7 231-237
  • 28 Cole P. Modification of inspired air.. In: Proctor DF, Andersen IB (eds) The nose. Upper airway physiology and the atmospheric environment. Elsevier Biomedical Press, Amsterdam New York Oxford; 1982: 351-375
  • 29 Cauna N, Cauna D, Hinderer KH. Innervation of human nasal glands.  J Neurocytol. 1972;  1 49-60
  • 30 Cauna N. Blood and nerve supply of the nasal lining.. In: Proctor DF, Andersen IB (eds) The nose. Upper airway physiology and the atmospheric environment. Elsevier Biomedical Press BV, Amsterdam New York Oxford; 1982: 45-69
  • 31 Dahlström A, Fuxe K. The adrenergic innervation of the nasal mucosa of certain mammals.  Acta Otolaryngol. 1965;  59 65-72
  • 32 Olsson P, Bende M, Ohlin P. The Laser Doppler Flowmeter for measuring microcirculation in human nasal mucosa.  Acta Otolaryngol. 1985;  99 133-139
  • 33 Lund VJ. Nasal physiology: Neurochemical receptors, nasal cycle, and ciliary action.  Allergy Asthma Proc. 1996;  17 179-184
  • 34 Cole P. Respiratory mucosal vascular responses, air conditioning and thermoregulation.  J Laryngol Otol. 1954;  68 613-622
  • 35 Walker JEC, Wells RE, Merrill EW. Heat and water exchange in the respiratory tract.  Am J Med. 1961;  30 259-267
  • 36 Willatt DJ. Continuous infrared thermometry of the nasal mucosa.  Rhinology. 1993;  31 63-67
  • 37 Cole P. Nasal and oral airflow resistors. Site, function, and assessment.  Arch Otolaryngol Head Neck Surg. 1992;  118 790-793
  • 38 Mlynski G. Strömung und Konditionierung der Atemluft.  Laryngorhinootologie. 2000;  79 636-638
  • 39 Elad D, Liebenthal R, Wenig BL, Einav S. Analysis of air flow patterns in the human nose.  Med Biol Eng Comput. 1993;  31 585-592
  • 40 Kelly JT, Prasad AK, Wexler AS. Detailed flow patterns in the nasal cavity.  J Appl Physiol. 2000;  89 323-337
  • 41 Webb P. Air temperatures in respiratory tracts of resting subjects in cold.  J Appl Physiol. 1951;  4 378-382
  • 42 Keck T, Leiacker, Heinrich A, Kühnemann S, Rettinger G. Humidity and temperature profile in the nasal cavity.  Rhinology. 2000;  38 167-171
  • 43 Keck T, Leiacker R, Riechelmann H, Rettinger G. Temperature profile in the nasal cavity.  Laryngoscope. 2000;  110 651-654
  • 44 Cole P. Further observations on the conditioning of respiratory air.  J Laryngol Otol. 1953;  67 669-681
  • 45 McFadden Jr ER, Pichurko BM, Bowman HF, Ingenito E, Burns S, Dowling N, Solway J. Thermal mapping of the airways in humans.  J Appl Physiol. 1985;  58 564-570
  • 46 Lindemann J, Wiesmiller K, Kastl KG. Dynamic nasal infrared thermography in patients with nasal septal perforations.  Am J Rhinol. 2009;  23 471-474
  • 47 Kastl KG, Wiesmiller KM, Lindemann J. Dynamic infrared thermography of the nasal vestibules: a new method.  Rhinology. 2008;  47 89-92
  • 48 Liese W, Joshi R, Cumming G. Humidification of respired gas by nasal mucosa.  Ann Otol. 1973;  82 330-332
  • 49 Drettner B, Falck B, Simon H. Measurements of the air conditioning capacity of the nose during normal and pathological conditions and pharmacological influence.  Acta Otolaryngol. 1977;  84 266-277
  • 50 Drettner B, Kumlien J. Experimental studies of the human nasal air conditioning capacity.  Acta Otolaryngol. 1981;  91 605-609
  • 51 Perwitzschky R. Die Temperatur- und Feuchtigkeitsverhältnisse der Atemluft in den Luftwegen. I. Mitteilung.  Arch f Hals-, Nasen- u Ohrenheilk. 1928;  117 1-36
  • 52 Perwitzschky R. Die Temperatur- und Feuchtigkeitsverhältnisse der Atemluft in den Luftwegen. II. Mitteilung.  Arch f Hals-, Nasen- u Ohrenheilk. 1930;  125 1-22
  • 53 Seeley LE. Study of changes in the temperature and water vapor content of respired air in the nasal cavity.  Heating Piping and Air Conditioning. 1940;  12 377-388
  • 54 Primiano FP, Montague FW, Saidel GM. Measurement system for respiratory water vapor and temperature dynamics.  J Appl Physiol Respirat Environ Exercise Physiol. 1984;  56 1679-1685
  • 55 Primiano FP, Saidel GM, Montague FW, Kruse KL, Green CG, Horowitz JG. Water vapour and temperature dynamics in the upper airways of normal and CF subjects.  Eur Respir J. 1988;  1 407-414
  • 56 Dick W. Aspects of humidification: requirements and techniques.  Int Anesthesiol Clin. 1974;  12 217-239
  • 57 Kohler P, Rimek A, Albrecht M, Frankenberger H, Mertins W, van Ackern K. Sind Feuchtigkeitsfilter in der Inspirationsluft während Narkosebeatmung notwendig? Neue In-vivo-Methode zur Feuchtigkeitsmessung im Atemgas.  Anästhesiol Intensivmed Notfallmed Schmerzther. 1992;  27 149-155
  • 58 Wissing H, Kuhn I, Kessler P. Das Wärme-Feuchte-Profil des PhysioFlex.  Untersuchungen am Modell. Anaesthesist. 1997;  46 201-206
  • 59 Kaufman JW, Farahmand K. In vivo measurements of human oral cavity heat and water vapor transport.  Respiratory Physiology and Neurobiology. 2006;  150 260-277
  • 60 Akerlund A, Bende M. Nasal mucosal temperature and the effect of acute infective rhinitis.  Clin Otolaryngol. 1989;  14 529-534
  • 61 Hair GE, Fischer ND, Preslar MJ. Humidification of air by nasal mucosa. A method of study.  Laryngoscope. 1969;  79 375-381
  • 62 Nowak E. Moisture measurement with capacitive polymer humidity sensors.  Sensors. 1996;  13 86-91
  • 63 Ohhashi T, Sakaguchi M, Tsuda T. Human perspiration measurement.  Physiol Meas. 1998;  19 449-461
  • 64 Wilson AC, Barnes TH, Seakins PJ, Rolfe TG, Meyer EJ. A low-cost, high-speed, near-infrared hygrometer.  Rev Sci Instrum. 1995;  66 5618-5624
  • 65 Kumlien J.. Persönliche Mitteilung 2000; 
  • 66 Ophir D, Elad Y, Fishler E, Fink A, Marshak G. Effects of elevated intranasal temperature on subjective and objective findings in perennial rhinitis.  Ann Otol Rhinol Laryngol. 1988;  97 259-263
  • 67 Assanasen P, Baroody FM, Naureckas E, Naclerio RM. Warming of feet elevates nasal mucosal surface temperature and reduces the early response to nasal challenge with allergen.  J Allergy Clin Immunol. 1999;  104 285-293
  • 68 Cole P. Air conditioning.. In: Cole P (ed) The respiratory role of the upper airways. Mosby Year Book, St. Louis; 1992: 102-106
  • 69 Keck T, Leiacker R, Meixner D, Kühnemann S, Rettinger G. Erwärmung der Atemluft in der Nase.  HNO. 2001;  49 36-40
  • 70 Heywang F, Nücke E, Timm J, Timm W. Wärmelehre.. In: Heywang F, Nücke E, Timm J, Timm W , Hrsg. Physik für Techniker. Verlag Handwerk und Technik, Hamburg; 1996: 155-203
  • 71 Mercke U. The influence of temperature on mucociliary activity: temperature range 40–50°C.  Acta Otolaryngol. 1974;  78 253-258
  • 72 Mercke U, Hakansson CH, Toremalm NG. The influence of temperature on mucociliary activity: temperature range 20–40°C.  Acta Otolaryngol. 1974;  78 444-450
  • 73 Swift DL, Proctor DF. Access of air to the respiratory tract.. In: Brain JD, Proctor DF, Reid LM (eds) Respiratory defence mechanisms. Marcel Dekker, Inc, New York; 1977: 63-93
  • 74 Keck T, Leiacker R, Lindemann J, Rettinger G, Kühnemann S. Endonasales Temperatur- und Feuchteprofil nach Exposition zu verschieden klimatisierter Einatemluft.  HNO. 2001;  49 372-377
  • 75 Olsson P, Bende M. Influence of environmental temperature on human nasal mucosa.  Ann Otol Rhinol Laryngol. 1985;  94 153-155
  • 76 Fontanari P, Burnet H, Zattara-Hartmann MC, Jammes Y. Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist air in normal individuals.  J Appl Physiol. 1996;  81 1739-1743
  • 77 Jankowski R, Philip G, Togias A, Naclerio R. Demonstration of bilateral cholinergic secretory response after unilateral nasal cold, dry air challenge.  Rhinology. 1993;  31 97-100
  • 78 Philip G, Jankowski R, Baroody FM, Naclerio RM, Togias AG. Reflex activation of nasal secretion by unilateral inhalation of cold dry air.  Am Rev Respir Dis. 1993;  148 1616-1622
  • 79 Rozsasi A, Leiacker R, Keck T. Nasal conditioning in perennial allergic rhinitis after nasal allergen challenge.  Clin Exp Allergy. 2004;  34 1099-1104
  • 80 Fabricant ND. The topical temperature of clinically normal nasal and pharyngeal mucous membranes.  Arch Otolaryngol. 1957;  66 275-277
  • 81 Jun Y, Qingping Z. Twenty-three cases of atrophic rhinitis treated by deep puncture at three points in the nasal region.  J Trad Chin Med. 1999;  19 115-117
  • 82 Lindemann J, Leiacker R, Rettinger G, Keck T. Nasal mucosal temperature during respiration.  Clin Otolaryngol. 2002;  27 135-139
  • 83 Lindemann J, Leiacker R, Rettinger G, Keck T. The effect of topical xylometazoline on the mucosal temperature of the nasal septum.  Am J Rhinol. 2002;  16 229-234
  • 84 Lindemann J, Leiacker R, Wiesmiller K, Rettinger G, Keck T. Immediate effect of benzalkonium-chloride in decongestant nasal spray on the human nasal mucosal temperature.  Clin Otolaryngol. 2004;  29 357-361
  • 85 Molony N, Blackwell C, Busuttil A. The effect of prone posture on nasal temperature in children in relation to induction of staphylococcal toxins implicated in sudden infant death syndrome.  FEMS Immunol Med Microbiol. 1999;  25 103-108
  • 86 Willatt DJ. Continuous infrared thermometry of the nasal mucosa.  Rhinology. 1993;  31 63-67
  • 87 Lindemann J, Sannwald D, Wiesmiller K. Age-related changes in intranasal air conditioning in the elderly.  Laryngoscope. 2008;  118 1472-1475
  • 88 Grutzenmacher S, Lang C, Saadi R, Mlynski G. First findings about the nasal airflow in noses with septal perforation.  Laryngorhinootologie. 2002;  81 276-279
  • 89 Hahn I, Scherer PW, Mozell MM. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity.  J Appl Physiol. 1993;  75 2273-2287
  • 90 Hess MM, Lamprecht J, Horlitz S. Experimentelle Untersuchungen in der Nasenhaupthöhle des Menschen im Nasenmodell.  Laryngo Rhino Otol. 1992;  71 467
  • 91 Hornung DE, Leopold DA, Youngentob SL, Sheehe PR, Gagne GM, Thomas FD, Mozell M. Airflow pattern in a human nasal model.  Arch Otolaryngol Head Neck Surg. 1987;  113 169-172
  • 92 Levine SC, Levine H, Jacobs G, Kasick J. A technique to model the nasal airway for aerodynamic study.  Arch Otolaryngol Head Neck Surg. 1986;  4 442-449
  • 93 Masing H. Experimentelle Untersuchungen über die Strömung im Nasenmodell.  Arch Klin Exp Ohren Nasen Kehlkopfheilkd. 1967;  189 59-70
  • 94 Mink JP. Physiologie der oberen Luftwege. Leipzig: Verlag FCW Vogel; 1920
  • 95 Mlynski G, Grutzenmacher S, Plontke S, Mlynski B, Lang C. Correlation of nasal morphology and respiratory function.  Rhinology. 2001;  39 197-201
  • 96 Proctor DF. Airborne disease and the upper respiratory tract.  Bacteriol Rev. 1966;  30 498-513
  • 97 Proctor DF, Swift DL. Temperature and water vapor adjustment. In: Respiratory Defense Mechanisms, Part I. Dekker M Inc, New York; 1977: 95-124
  • 98 Proetz AW. Air currents in the upper respiratory tract and their clinical importance.  Ann Otol Rhinol Laryngol. 1951;  60 439-467
  • 99 Scherer PW, Hahn II, Mozell MM. The biophysics of nasal airflow.  Otolaryngol Clin North Am. 1989;  22 265-278
  • 100 Simmen D, Scherrer JL, Moe K, Heinz B. A dynamic and direct visualization model for the study of nasal airflow.  Arch Otolaryngol Head Neck Surg. 1999;  125 1015-1021
  • 101 Tonndorf J. Der Weg der Atemluft durch die menschliche Nase.  Arch Ohr-, Nase-, Kehlk Heilk. 1939;  146 41
  • 102 Uddstromer M. Nasal respiration.  Acta Oto Laryngologica. 1940;  ((Suppl 42))
  • 103 Ozlugedik S, Nakiboglu G, Sert C, Elhan A, Tonuk E, Akyar S, Tekdemir I. Numerical study of the aerodynamic effects of septoplasty and partial lateral turbinectomy.  Laryngoscope. 2008;  118 330-334
  • 104 Ishikawa S, Nakayama T, Watanabe M, Matsuzawa T. Flow mechanisms in the human olfactory groove: numerical simulation of nasal physiological respiration during inspiration, expiration, and sniffing.  Arch Otolaryngol Head Neck Surg. 2009;  135 156-162
  • 105 Wen J, Inthavong K, Tu J, Wang S. Numerical simulations for detailed airflow dynamics in a human nasal cavity.  Resp Physiol Neurobiol. 2008;  161 125-135
  • 106 Zhao K, Pribitkin EA, Cowart BJ, Rosen D, Scherer PW, Dalton P. Numerical modeling of nasal obstruction and endoscopic surgical intervention: outcome to airflow and olfaction.  Am J Rhinol. 2006;  20 308-316
  • 107 Wexler D, Segal R, Kimbell J. Aerodynamic effects of inferior turbinate reduction: computational fluid dynamics simulation.  Arch Otolaryngol Head Neck Surg. 2005;  131 ((12)) 1102-1107
  • 108 Xiong GX, Zhan JM, Jiang HY, Li JF, Rong LW, Xu G. Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses.  Am J Rhinol. 2008;  22 477-482
  • 109 Xiong G, Zhan J, Zuo K, Li J, Rong L, Xu G. Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity.  Med Biol Eng Comput. 2008;  46 1161-1167
  • 110 Garcia GJ, Bailie N, Martins DA, Kimbell JS. Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity.  J Appl Physiol. 2007;  103 1082-1092
  • 111 Lindemann J, Keck T, Wiesmiller K, Sander B, Brambs HJ, Rettinger G, Pless D. A numerical simulation of intranasal air temperature during inspiration.  Laryngoscope. 2004;  114 1037-1041
  • 112 Pless D, Keck T, Wiesmiller K, Rettinger G, Aschoff AJ, Fleiter TR, Lindemann J. Numerical simulation of air temperature and airflow patterns in the human nose during expiration.  Clin Otolaryngol. 2004;  29 642-647
  • 113 Lindemann J, Keck T, Wiesmiller KM, Sander B, Brambs HJ, Rettinger G, Pless D. Nasal air temperature and airflow during respiration in numerical simulation based on multislice computed tomography scan.  Am J Rhinol Rhinol. 2006;  20 219-223
  • 114 Lindemann J, Brambs HJ, Keck T, Wiesmiller KM, Rettinger G, Pless D. Numerical simulation of intranasal air flow after radical sinus surgery.  Am J Otolaryngol. 2005;  26 175-180
  • 115 Lindemann J, Keck T, Wiesmiller KM, Rettinger G, Brambs HJ, Pless D. Numerical simulation of intranasal air flow and temperature after resection of the turbinates.  Rhinology. 2005;  43 24-28
  • 116 Pless D, Keck T, Wiesmiller KM, Lamche R, Aschoff AJ, Lindemann J. Numerical simulation of airflow patterns and air temperature distribution during inspiration in a nose model with septal perforation.  Am J Rhinol. 2004;  18 357-362
  • 117 Bockholt U, Mlynski G, Muller W, Voss G. Rhinosurgical therapy planning via endonasal airflow simulation.  Comput Aided Surg. 2000;  5 175-179
  • 118 Grant O, Bailie N, Watterson J, Cole J, Gallagher G, Hanna B. Numerical model of a nasal septal perforation.  Medinfo. 2004;  11 1352-1356
  • 119 Keyhani K, Scherer PW, Mozell MM. Numerical simulation of airflow in the human nasal cavity.  J Biomech Eng. 1995;  117 429-441
  • 120 Muller-Wittig W, Mlynski G, Weinhold I, Bockholt U, Voss G. Nasal airflow diagnosis – comparison of experimental studies and computer simulations.  Stud Health Technol Inform. 2002;  85 311-317
  • 121 Tarabichi M, Fanous N. Finite element analysis of airflow in the nasal valve.  Arch Otolaryngol Head Neck Surg. 1993;  119 638-642
  • 122 Weinhold I, Mlynski G. Numerical simulation of airflow in the human nose.  Eur Arch Otorhinolaryngol. 2004;  261 452-455
  • 123 Zhao K, Scherer PW, Hajiloo SA, Dalton P. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction.  Chem Senses. 2004;  29 365-379
  • 124 Martonen TB, Quan L, Zhang Z, Musante CJ. Flow simulation in the human upper respiratory tract.  Cell Biochem Biophys. 2002;  37 27-36
  • 125 Martonen TB, Zhang Z, Yu G, Musante CJ. Three-dimensional computer modeling of the human upper respiratory tract.  Cell Biochem Biophys. 2001;  35 255-261
  • 126 Balashazy I, Farkas A, Szoke I, Hofmann W, Sturm R. Simulation of deposition and clearance of inhaled particles in central human airways.  Radiat Prot Dosimetry. 2003;  105 129-132
  • 127 Calay RK, Kurujareon J, Holdo AE. Numerical simulation of respiratory flow patterns within human lung.  Respir Physiolo Neurobiol. 2002;  130 201-221
  • 128 Hegedus CJ, Balashazy I, Farkas A. Detailed mathematical description of the geometry of airway bifurcations.  Respir Physiol Neurobiol. 2004;  141 99-114
  • 129 Nowak N, Kakade PP, Annapragada AV. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs.  Ann Biomed Eng. 2003;  31 374-390
  • 130 Moe R. The effect on the respiratory functions of the nose of the lumen-dilating nasal operations.  Acta Otolaryngol. 1942;  ((Suppl 45)) 5-146
  • 131 Lindemann J, Keck T, Leiacker R, Dzida R, Wiesmiller K. Early influence of bilateral turbinoplasty combined with septoplasty on intranasal air conditioning.  Am J Rhinol. 2008;  22 542-545
  • 132 Arunachalam PS, Kitcher E, Gray J, Wilson JA. Nasal septal surgery: evaluation of symptomatic and general health outcomes.  Clin Otolaryngol Allied Sci. 2001;  26 367-370
  • 133 Stewart MG, Smith TL, Weaver EM. Outcomes after nasal septoplasty: results from the Nasal Obstruction Septoplasty Effectiveness (NOSE) study.  Otolaryngol Head Neck Surg. 2004;  130 283-290
  • 134 Wiesmiller K, Keck T, Rettinger G, Leiacker R, Dzida R, Lindemann J. Nasal air conditioning in patients before and after septoplasty with bilateral turbinoplasty.  Laryngoscope. 2006;  116 890-894
  • 135 Rozsasi A, Leiacker R, Kühnemann S, Lindemann J, Kappe T, Rettinger G, Keck T. The impact of septorhinoplasty and anterior turbinoplasty on nasal conditioning.  Am J Rhinol. 2007;  21 302-306
  • 136 Lindemann J, Kuhnemann S, Stehmer V, Leiacker R, Rettinger G, Keck T. Temperature and humidity profile of the anterior nasal airways of patients with nasal septal perforation.  Rhinology. 2001;  39 202-206
  • 137 Lindemann J, Leiacker R, Stehmer V, Rettinger G, Keck T. Intranasal temperature and humidity profile in patients with nasal septal perforation before and after surgical closure.  Clin Otolaryngol Allied Sci. 2001;  26 433-437
  • 138 Stammberger H, Posawetz W. Functional endoscopic sinus surgery. Concept, indications and results of the Messerklinger technique.  Eur Arch Otorhinolaryngol. 1990;  247 63-76
  • 139 Kennedy DW, Senior BA. Endoscopic sinus surgery: A review.  Prim Care. 1998;  25 703-720
  • 140 Keck T, Leiacker R, Kuhnemann S, Rettinger G. Heating of air in the nasal airways in patients with chronic sinus disease before and after sinus surgery.  Clin Otolaryngol Allied Sci. 2001;  26 53-58
  • 141 Papp J, Leiacker R, Keck T, Rozsasi A, Kappe T. Nasal air-conditioning in patients with chronic rhinosinusitis and nasal polyposis.  Arch Otolaryngol Head Neck Surg. 2008;  134 931-935
  • 142 Kappe T, Papp J, Rozsasi A, Leiacker R, Rettinger G, Keck T. Nasal conditioning after endonasal surgery in chronic rhinosinusitis with nasal polyps.  Am J Rhinol. 2008;  22 89-94
  • 143 Lindemann J, Leiacker R, Sikora T, Rettinger G, Keck T. Impact of unilateral sinus surgery with resection of the turbinates by means of midfacial degloving on nasal air conditioning.  Laryngoscope. 2002;  112 2062-2066

Korrespondenzadresse

Prof. Dr. med. Tilman Keck

Krankenhaus der Elisabethinen

GmbH

Akademisches Lehrkrankenhaus

der Medizinischen Universität

Graz

Elisabethinergasse 14

8020 Graz

Österreich

Email: kecktill@aol.com

Prof. Dr. med. Jörg Lindemann

Oberarzt der Universitäts-

HNO-Klinik Ulm

Frauensteige 12

89075 Ulm

Email: joerg.lindemann@uniklinik-ulm.de

    >