Subscribe to RSS
DOI: 10.1055/s-0029-1245727
© Georg Thieme Verlag KG Stuttgart · New York
Continuously Moving Table MRI in Oncology
MRT mit kontinuierlicher Tischbewegung in der OnkologiePublication History
received: 9.6.2010
accepted: 18.8.2010
Publication Date:
04 October 2010 (online)

Zusammenfassung
Die Magnetresonanztomografie (MRT) bei kontinuierlich bewegtem Patiententisch ist eine moderne Untersuchungsmethode, um ein erweitertes, stufenloses Bildfeld in z-Richtung zu akquirieren. Die technische Realisierung kann mittels sehr schneller Sequenzen wie echoplanarer Bildgebung erfolgen, wobei die Bewegung bei der Bilderstellung und Rekonstruktion vernachlässigt werden kann. Andere Kontraste erfordern jedoch eine Bewegungskorrektur, entweder während der Messung oder im Rahmen der Bildberechnung. In ersten klinischen Studien zeigte die Anwendung schneller Steady-State-Sequenzen bereits vielversprechende Ergebnisse hinsichtlich der Detektierbarkeit von Metastasen gegenüber diagnostischen Routineverfahren. Allerdings wird zur Tischbewegung und Positionskontrolle zusätzliches Equipment benötigt. Die später entwickelte Sliding-Multislice (SMS)-Technik erfolgt ohne zusätzliche Hardware. Klinische Arbeiten belegen eine gegenüber stationär aufgenommenen Sequenzen analoge Bildqualität und eine mit der Computertomografie (CT) vergleichbare Erkennbarkeit von pulmonalen und abdominellen Metastasen. Die kurzen Untersuchungszeiten ermöglichen eine Integration der MRT bei kontinuierlicher Tischbewegung in für die Tumordiagnostik spezialisierte, stationäre Protokolle mit dem Ziel einer Kombination aus lokalem Staging und thorakoabdomineller Metastasensuche in einem Untersuchungsgang. Neue Kontraste wie Diffusionsbildgebung oder Dixon-Techniken sowie weitere Verbesserungen des Workflows durch Atemkompensation und intuitive Planungssequenzen befinden sich in der Entwicklung und werden die klinischen Anwendungsmöglichkeiten dieser Technik erweitern.
Abstract
Magnetic resonance imaging (MRI) with a continuously moving table (CMT) represents a novel method allowing for the seamless acquisition of an extended field-of-view in the z-direction. One option to realize CMT MRI from a technical point of view is based on very fast sequences like echo planar imaging (EPI). Consequently, table translation for signal sampling and image reconstruction can be neglected. The acquisition of different contrasts, however, necessitates table motion correction, either during acquisition or via post-processing. First clinical studies applying fast steady-state imaging already yielded promising results with respect to metastasis detection. Nevertheless, additional equipment has to be installed for table motion and position tracking. In contrast, the subsequently developed sliding multislice (SMS) technique can be implemented without any additional hardware. In clinical studies, the achievable image quality corresponds to stationary sequences. Additionally, the use of SMS for the detection of pulmonary and abdominal metastases appears to be comparable to computed tomography (CT). Due to the relatively short examination times, CMT MRI can be integrated into highly specialized stationary imaging protocols, thus increasing the possibility to combine local staging with thoracoabdominal metastasis screening within one examination. New contrasts like diffusion-weighted imaging (DWI) or Dixon techniques as well as improved workflow including breathing motion compensation and intuitive scout acquisition have already been proposed and will further expand the clinical applications of this technique.
Key words
continuously moving table MRI - whole-body MRI - staging
References
- 1
Schaefer J F, Schlemmer H P.
Total-body MR-imaging in oncology.
Eur Radiol.
2006;
16
2000-2015
MissingFormLabel
- 2
Ohlmann-Knafo S, Kirschbaum M, Fenzl G et al.
Diagnostischer Stellenwert der Ganzkörper-MRT und der Skelettszintigrafie in der ossären
Metastasendetektion bei Mammakarzinompatientinnen – eine prospektive Doppelblindstudie
an zwei Klinikzentren.
Fortschr Röntgenstr.
2009;
181
255-263
MissingFormLabel
- 3
Ketelsen D, Rothke M, Aschoff P et al.
Nachweis ossärer Metastasen des Prostatakarzinoms – Vergleich der Leistungsfähigkeit
der Ganzkörper-MRT und der Skelettszintigrafie.
Fortschr Röntgenstr.
2008;
180
746-752
MissingFormLabel
- 4
Ladd S C, Zenge M, Antoch G et al.
MR-Ganzkörperdiagnostik.
Fortschr Röntgenstr.
2006;
178
763-770
MissingFormLabel
- 5
Schmidt G P, Baur-Melnyk A, Haug A et al.
Whole-body MRI at 1.5T and 3T compared with FDG-PET-CT for the detection of tumour
recurrence in patients with colorectal cancer.
Eur Radiol.
2009;
19
1366-1378
MissingFormLabel
- 6
Schmidt G P, Schoenberg S O, Schmid R et al.
Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality
PET-CT.
Eur Radiol.
2007;
17
939-949
MissingFormLabel
- 7
Muller-Horvat C, Radny P, Eigentler T K et al.
Prospective comparison of the impact on treatment decisions of whole-body magnetic
resonance imaging and computed tomography in patients with metastatic malignant melanoma.
Eur J Cancer.
2006;
42
342-350
MissingFormLabel
- 8
Beer M, Stenzel M, Girschick H et al.
Ganzkörper-MRT bei Kindern mit Verdacht auf Osteonekrose nach intensiver Chemotherapie:
Erste Ergebnisse.
Fortschr Röntgenstr.
2008;
180
238-245
MissingFormLabel
- 9
Bohlscheid A, Nuss D, Lieser S et al.
Tumorsuche mittels kernspintomografischer Diffusionsbildgebung.
Fortschr Röntgenstr.
2008;
180
302-309
MissingFormLabel
- 10
Huppertz A, Schmidt M, Wagner M et al.
Ganzkörper-MR-Tomografie im Vergleich zu einem sequenziellen multimodalen diagnostischen
Algorithmus für das Staging von Patienten mit einem Rektumkarzinom: Kostenanalyse.
Fortschr Röntgenstr.
2010;
182
793-802
MissingFormLabel
- 11
Hegenscheid K, Kuhn J P, Volzke H et al.
Ganzkörper-Magnetresonanztomografie von gesunden Probanden: Pilotstudienergebnisse
der populationsbasierten SHIP Studie.
Fortschr Röntgenstr.
2009;
181
748-759
MissingFormLabel
- 12
Honal M, Leupold J, Huff S et al.
Compensation of breathing motion artifacts for MRI with continuously moving table.
Magn Reson Med.
2010;
63
701-712
MissingFormLabel
- 13
Ehman R L, McNamara M T, Pallack M et al.
Magnetic resonance imaging with respiratory gating: techniques and advantages.
Am J Roentgenol.
1984;
143
1175-1182
MissingFormLabel
- 14
Lin W, Guo J, Rosen M A et al.
Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest
and abdominal lesions.
Magn Reson Med.
2008;
60
1135-46
MissingFormLabel
- 15
Bayramoglu S, Kilickesmez O, Cimilli T et al.
T2-weighted MRI of the upper abdomen: comparison of four fat-suppressed T 2-weighted
sequences including PROPELLER (BLADE) technique.
Acad Radiol.
2010;
17
368-374
MissingFormLabel
- 16
Ruehm S G, Goyen M, Quick H H et al.
Whole-body MRA on a rolling table platform (AngioSURF).
Fortschr Röntgenstr.
2000;
172
670-674
MissingFormLabel
- 17
Barkhausen J, Quick H H, Lauenstein T et al.
Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling
table platform: feasibility study.
Radiology.
2001;
220
252-256
MissingFormLabel
- 18 Zenge M O, Quick H H, Vogt F M et al. MR Imaging with a continuously rolling table platform and high-precision position
feedback. Proceedings of the 12th Annual Meeting of ISMRM. Kyoto, Japan; 2004
MissingFormLabel
- 19
Brauck K, Zenge M O, Vogt F M et al.
Feasibility of whole-body MR with T 2- and T 1-weighted real-time steady-state free
precession sequences during continuous table movement to depict metastases.
Radiology.
2008;
246
910-916
MissingFormLabel
- 20
Zenge M O, Ladd M E, Vogt F M et al.
Whole-body magnetic resonance imaging featuring moving table continuous data acquisition
with high-precision position feedback.
Magn Reson Med.
2005;
54
707-711
MissingFormLabel
- 21
Johnson K M, Leavitt G D, Kayser H W.
Total-body MR imaging in as little as 18 seconds.
Radiology.
1997;
202
262-267
MissingFormLabel
- 22
Kruger D G, Riederer S J, Grimm R C et al.
Continuously moving table data acquisition method for long FOV contrast-enhanced MRA
and whole-body MRI.
Magn Reson Med.
2002;
47
224-231
MissingFormLabel
- 23
Fautz H P, Kannengiesser S A.
Sliding multislice (SMS): a new technique for minimum FOV usage in axial continuously
moving-table acquisitions.
Magn Reson Med.
2006;
55
363-370
MissingFormLabel
- 24
Ludwig U, Sommer G, Zaitsev M et al.
2D axial moving table acquisitions with dynamic slice adaptation.
Magn Reson Med.
2006;
55
423-430
MissingFormLabel
- 25
Horvath L J, Burtness B A, McCarthy S et al.
Total-body echo-planar MR imaging in the staging of breast cancer: comparison with
conventional methods--early experience.
Radiology.
1999;
211
119-128
MissingFormLabel
- 26 Weigel M, Fautz H P, Ghanem N et al. Adaptation of HASTE for continuous moving table acquisition. Proceedings of the 11th
Annual Meeting of ISMRM. Toronto, Canada; 2003
MissingFormLabel
- 27
Bornert P, Aldefeld B.
Principles of whole-body continuously-moving-table MRI.
J Magn Reson Imaging.
2008;
28
1-12
MissingFormLabel
- 28
Shankaranarayanan A, Herfkens R, Hargreaves B M et al.
Helical MR: continuously moving table axial imaging with radial acquisitions.
Magn Reson Med.
2003;
50
1053-1060
MissingFormLabel
- 29
Zhu Y, Dumoulin C L.
Extended field-of-view imaging with table translation and frequency sweeping.
Magn Reson Med.
2003;
49
1106-1112
MissingFormLabel
- 30
Aldefeld B, Bornert P, Keupp J.
Continuously moving table 3D MRI with lateral frequency-encoding direction.
Magn Reson Med.
2006;
55
1210-1216
MissingFormLabel
- 31
Kruger D G, Riederer S J, Rossman P J et al.
Recovery of phase inconsistencies in continuously moving table extended field of view
magnetic resonance imaging acquisitions.
Magn Reson Med.
2005;
54
712-717
MissingFormLabel
- 32
Zenge M O, Vogt F M, Brauck K et al.
High-resolution continuously acquired peripheral MR angiography featuring partial
parallel imaging GRAPPA.
Magn Reson Med.
2006;
56
859-865
MissingFormLabel
- 33
Zenge M O, Ladd M E, Quick H H.
Novel reconstruction method for three-dimensional axial continuously moving table
whole-body magnetic resonance imaging featuring autocalibrated parallel imaging GRAPPA.
Magn Reson Med.
2009;
61
867-873
MissingFormLabel
- 34
Keupp J, Aldefeld B, Bornert P.
Continuously moving table SENSE imaging.
Magn Reson Med.
2005;
53
217-220
MissingFormLabel
- 35 Aldefeld B, Bornert P, Keupp J et al. Respiratory-gated continuously moving table 3D MRI. Proceedings of the 14th Scientific
Meeting of the ISMRM. Seattle, WA; 2006
MissingFormLabel
- 36 Baumann T, Ludwig U, Pache G et al. Interactive scan-control with online reconstruction improves axial breath-hold imaging
for continuously moving table MRI. European Congress of Radiology. Vienna, Austria; 2008
MissingFormLabel
- 37 Honal M, Ludwig U, Baumann T. Artifact reduction for multi-breath-hold acquisitions in MRI with continuously moving
table. Proceedings 26th Scientific Meeting ESMRMB. Antalya, Turkey; 2009
MissingFormLabel
- 38 Honal M, Leupold J, Baumann T. Breathing motion artifact reduction for MRI with continuously moving table using motion
consistent retrospective data selection. Proceedings of the 18th Annual Meeting of
ISMRM. Stockholm, Sweden; 2010
MissingFormLabel
- 39
Sommer G, Fautz H P, Ludwig U et al.
Multicontrast sequences with continuous table motion: a novel acquisition technique
for extended field of view imaging.
Magn Reson Med.
2006;
55
918-922
MissingFormLabel
- 40
Bornert P, Keupp J, Eggers H et al.
Whole-body 3D water/fat resolved continuously moving table imaging.
J Magn Reson Imaging.
2007;
25
660-665
MissingFormLabel
- 41 Klausmann F, Ludwig U, Honal M et al. Accuracy of wholebody fat quantification with MRI: A comparison to Air-Displacement
Plethysmography. Proceedings of the 18th Annual Meeting of ISMRM. Stockholm, Sweden; 2010
MissingFormLabel
- 42
Kullberg J, Johansson L, Ahlstrom H et al.
Automated assessment of whole-body adipose tissue depots from continuously moving
bed MRI: a feasibility study.
J Magn Reson Imaging.
2009;
30
185-193
MissingFormLabel
- 43 Han Y, Huff S, Hennig J et al. A Novel Whole Body Diffusion Weighted Imaging Technique with Continuously Moving Table:
Preliminary Results. Proceedings of the 18th Annual Meeting of ISMRM. Stockholm, Sweden; 2010
MissingFormLabel
- 44 Han Y, Ludwig U. Which fat suppression method should be used for countinuously moving table whole-body
diffusion-weighted-imaging? Proceedings of the 18th Annual Meeting of ISMRM. A Novel
Whole Body Diffusion Weighted Imaging Technique with Continuously Moving Table: Preliminary
Results. 2010
MissingFormLabel
- 45
Fenchel M, Thesen S, Schilling A.
Automatic labeling of anatomical structures in MR FastView images using a statistical
atlas.
Med Image Comput Comput Assist Interv.
2008;
11
576-584
MissingFormLabel
- 46
Koken P, Dries S P, Keupp J et al.
Towards automatic patient positioning and scan planning using continuously moving
table MR imaging.
Magn Reson Med.
2009;
62
1067-1072
MissingFormLabel
- 47
Keil A, Wachinger C, Brinker G et al.
Patient position detection for SAR optimization in magnetic resonance imaging.
Med Image Comput Comput Assist Interv.
2006;
9
49-57
MissingFormLabel
- 48
Sommer G, Schaefer A O, Baumann T et al.
Sliding multislice MRI for abdominal staging of patients with pelvic malignancies:
a pilot study.
J Magn Reson Imaging.
2008;
27
666-672
MissingFormLabel
- 49
Bley T A, Tittelbach-Helmrich D, Baumann T et al.
Sliding multislice MRI for abdominal staging of rectal gastrointestinal stromal tumours.
In Vivo.
2007;
21
891-894
MissingFormLabel
- 50
Baumann T, Ludwig U, Pache G et al.
Continuously moving table MRI with sliding multislice for rectal cancer staging: image
quality and lesion detection.
Eur J Radiol.
2010;
73
579-587
MissingFormLabel
- 51
Baumann T, Ludwig U, Pache G et al.
Detection of pulmonary nodules with move-during-scan magnetic resonance imaging using
a free-breathing turbo inversion recovery magnitude sequence.
Invest Radiol.
2008;
43
359-367
MissingFormLabel
- 52 Pache G, Baumann T, Schaefer A O et al. Combined high-resolution pelvic and whole-body sliding multislice MRI for ovarian
cancer staging: Comparison with MSCT. European Congress of Radiology. Vienna, Austria; 2009
MissingFormLabel
- 53 Schaefer A O, Langer M (eds).. MRI of Rectal Cancer. Springer. Heidelberg, New York; 2010
MissingFormLabel
- 54
Schafer A O, Baumann T, Pache G et al.
Präoperatives Staging des Rektumkarzinoms.
Radiologe.
2007;
47
635-651
; quiz 652
MissingFormLabel
- 55
Schaefer A O, Langer M.
MRT beim Rektumkarzinom – Erstdiagnose und Rezidive.
Fortschr Röntgenstr.
2010;
182
S 147
MissingFormLabel
- 56
Schaefer O, Langer M.
Detection of recurrent rectal cancer with CT, MRI and PET/CT.
Eur Radiol.
2007;
17
2044-2054
MissingFormLabel
Prof. Arnd-Oliver Schaefer
Radiologische Klinik, Universitätsklinikum Freiburg
Hugstetter Straße 55
79106 Freiburg
Germany
Phone: ++ 49/7 61/2 70 38 94
Fax: ++ 49/7 61/2 70 38 30
Email: arnd-oliver.schaefer@uniklinik-freiburg.de