Fortschr Neurol Psychiatr 2010; 78(6): 319-331
DOI: 10.1055/s-0029-1245240
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Serotonin Kompakt – Teil 1[*]

Neurobiologische und entwicklungsgenetische GrundlagenSerotonin Now: Part 1Neurobiology and Developmental GeneticsC. Kriegebaum1 , L. Gutknecht1 , A. Schmitt1 , K.-P. Lesch1 , A. Reif1
  • 1Klinik für Psychiatrie, Psychosomatik und Psychotherapie, Universität Würzburg (Leiter: Prof. Jürgen Deckert)
Further Information

Publication History

Publication Date:
25 March 2010 (online)

Zusammenfassung

Bereits in den 1960er-Jahren wurde eine Beteiligung von Serotonin (5-Hydroxytryptamin, 5-HT) an psychischen Krankheiten erkannt, was durch unterschiedlichste Forschungsansätze in den folgenden Jahren weiter untermauert werden konnte. Das Indolamin 5-HT wird zu den Monoamintransmittern gezählt und befindet sich in den serotonergen Neuronen (Raphe-Nuclei) des Hirnstamms sowie peripher hauptsächlich im Gastrointestinaltrakt und der Zirbeldrüse. 5-HT ist bei unterschiedlichstem kognitiven, emotionalen und autonomen Verhalten und bei zirkadianen Rhythmen beteiligt. Zusätzlich zu seiner Bedeutung als Neurotransmitter kommt 5-HT, das einem exakt geregelten Expressionsmuster unterliegt, eine wichtige Rolle während der pränatalen Entwicklung und auch in der adulten Neurogenese zu. Seine zahlreichen physiologischen und pathophysiologischen Effekte vermittelt 5-HT über spezifische prä- und postsynaptische 5-HT-Rezeptoren, deren Vorkommen und Wirkung hier näher ausgeführt werden. Der Serotonin-Transporter (SERT), der nach Ausschüttung des Botenstoffs in den synaptischen Spalt 5-HT aktiv in die Zelle zurücktransportiert, spielt nicht nur eine wichtige Rolle bei der Terminierung der serotonergen Neurotransmission, sondern ist auch ein wichtiges Angriffsziel für Antidepressiva. In diesem ersten Teil des Übersichtsartikels wird detailliert auf die neurobiologischen Grundlagen von 5-HT-Synthese, -Abbau und -Speicherung sowie die serotonerge Neurotransmission und die damit verbundenen physiologischen Effekte eingegangen, während der zweite Teil klinische Befunde näher erläutert und kritisch diskutiert.

Abstract

As soon as in the 1960’s, the role of serotonin (5-Hydroxytryptamin, 5-HT) in psychiatric disorders was realized, which was further substantiated by several lines of evidence amounting to a huge body of knowledge. The indolamine 5-HT belongs to the class of monoamine transmitters and can be found in the serotonergic neurons of the raphe nuclei in the brain stem. In the periphery, it is mainly present in the gastrointestinal system and the pineal gland. 5-HT is implicated in a variety of cognitive, emotional and vegetative behaviors, as well as in the regulation of circadian rhythms. Apart from its role as a neurotransmitter, it has an important function in prenatal development, where its expression pattern is tightly regulated, and in adult neurogenesis. The numerous effects of 5-HT are mediated by specific pre- and postsynaptic receptors, whose localization and functions are further described here. The serotonin transporter (SERT), which accomplishes the re-uptake of 5-HT into the neuron following its release in the synaptic cleft, not only has an important role in the termination of serotonergic neurotransmission but is also an important drug target for antidepressant compounds. In this part of the review, the neurobiological underpinnings of 5-HT synthesis, metabolism, and neurotransmission as well as the corresponding physiological consequences are summarized, while in the second part, an overview on clinical findings is provided and critically discussed.

1 Die dieser Arbeit zugrunde liegenden Untersuchungen wurden durch die DFG (GK-1156, an CK und KPL, RE1632/1-5 an AR, KFO 125 an AR und KPL; SFB 581 an AS und KPL, SFB TRR 58 an AR und KPL), das BMBF (IZKF Würzburg, 01KS9603, an KPL; IZKF N-27-N, an AR) und die EU (NEWMOOD LSHM-CT-2003-503474, an KPL) gefördert.

Literatur

  • 1 Erspamer V, Vialli M. Presence of enteramine in the skin of Amphibia.  Nature. 1951;  167 1033
  • 2 Rapport M M. Serum vasoconstrictor (serotonin) the presence of creatinine in the complex; a proposed structure of the vasoconstrictor principle.  J Biol Chem. 1949;  180 961-969
  • 3 Twarog B M. Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine.  J Cell Physiol. 1954;  44 141-163
  • 4 Coppen A. The biochemistry of affective disorders.  Br J Psychiatry. 1967;  113 1237-1264
  • 5 Coppen A, Shaw D M, Herzberg B. et al . Tryptophan in the treatment of depression.  Lancet. 1967;  2 1178-1180
  • 6 Lesch K P. Variation of serotonergic gene expression: neurodevelopment and the complexity of response to psychopharmacologic drugs.  Eur Neuropsychopharmacol. 2001;  11 457-474
  • 7 Cordes S P. Molecular genetics of the early development of hindbrain serotonergic neurons.  Clin Genet. 2005;  68 487-494
  • 8 Ye W, Shimamura K, Rubenstein J L. et al . FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate.  Cell. 1998;  93 755-766
  • 9 Alenina N, Bashammakh S, Bader M. Specification and differentiation of serotonergic neurons.  Stem Cell Rev. 2006;  2 5-10
  • 10 Pattyn A, Simplicio N, Doorninck J H. et al . Ascl1 /Mash1 is required for the development of central serotonergic neurons.  Nat Neurosci. 2004;  7 589-595
  • 11 Lauder J M. Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal.  Ann N Y Acad Sci. 1990;  600 297-313; discussion 314
  • 12 Shemer A V, Azmitia E C, Whitaker-Azmitia P M. Dose-related effects of prenatal 5-methoxytryptamine (5-MT) on development of serotonin terminal density and behavior.  Brain Res Dev Brain Res. 1991;  59 59-63
  • 13 Whitaker-Azmitia P M, Azmitia E C. Autoregulation of fetal serotonergic neuronal development: role of high affinity serotonin receptors.  Neurosci Lett. 1986;  67 307-312
  • 14 Liu J P, Lauder J M. Serotonin and nialamide differentially regulate survival and growth of cultured serotonin and catecholamine neurons.  Brain Res Dev Brain Res. 1991;  62 297-305
  • 15 Lauder J M. Neurotransmitters as growth regulatory signals: role of receptors and second messengers.  Trends Neurosci. 1993;  16 233-240
  • 16 Lauder J M, Krebs van H. Serotonin as a differentiation signal in early neurogenesis.  Dev Neurosci. 1978;  1 15-30
  • 17 Mazer C, Muneyyirci J, Taheny K. et al . Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits.  Brain Res. 1997;  760 68-73
  • 18 Gutknecht L, Kriegebaum C, Waider J. et al . Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human brain: convergent data from Tph2 knockout mice.  Eur Neuropsychopharmacol. 2009;  19 266-282
  • 19 Côté F, Fligny C, Bayard E. et al . Maternal serotonin is crucial for murine embryonic development.  Proc Natl Acad Sci U S A. 2007;  104 329-334
  • 20 Lavdas A A, Blue M E, Lincoln J. et al . Serotonin promotes the differentiation of glutamate neurons in organotypic slice cultures of the developing cerebral cortex.  J Neurosci. 1997;  17 7872-7880
  • 21 Gaspar P, Cases O, Maroteaux L. The developmental role of serotonin: news from mouse molecular genetics.  Nat Rev Neurosci. 2003;  4 1002-1012
  • 22 Lesch K P, Merschdorf U. Impulsivity, aggression, and serotonin: a molecular psychobiological perspective.  Behav Sci Law. 2000;  18 581-604
  • 23 Gross C, Hen R. The developmental origins of anxiety.  Nat Rev Neurosci. 2004;  5 545-552
  • 24 Galter D, Unsicker K. Sequential activation of the 5-HT1(A) serotonin receptor and TrkB induces the serotonergic neuronal phenotype.  Mol Cell Neurosci. 2000;  15 446-455
  • 25 Azmitia E C, Gannon P J, Kheck N M. et al . Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells.  Neuropsychopharmacology. 1996;  14 35-46
  • 26 Riad M, Emerit M B, Hamon M. Neurotrophic effects of ipsapirone and other 5-HT1A receptor agonists on septal cholinergic neurons in culture.  Brain Res Dev Brain Res. 1994;  82 245-258
  • 27 Dahlstrom A, Fuxe K. Localization of monoamines in the lower brain stem.  Experientia. 1964;  20 398-399
  • 28 Hornung J P. The human raphe nuclei and the serotonergic system.  J Chem Neuroanat. 2003;  26 331-343
  • 29 Ormsbee H S 3 rd, Fondacaro J D. Action of serotonin on the gastrointestinal tract.  Proc Soc Exp Biol Med. 1985;  178 333-338
  • 30 Walther D J, Peter J U, Winter S. et al . Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release.  Cell. 2003;  115 851-862
  • 31 Finocchiaro L M, Arzt E S, Fernandez-Castelo S. et al . Serotonin and melatonin synthesis in peripheral blood mononuclear cells: stimulation by interferon-gamma as part of an immunomodulatory pathway.  J Interferon Res. 1988;  8 705-716
  • 32 Geba G P, Ptak W, Anderson G M. et al . Delayed-type hypersensitivity in mast cell-deficient mice: dependence on platelets for expression of contact sensitivity.  J Immunol. 1996;  157 557-565
  • 33 Rudd M L, Nicolas A N, Brown B L. et al . Peritoneal macrophages express the serotonin transporter.  J Neuroimmunol. 2005;  159 113-118
  • 34 El-Nour H, Lundeberg L, Abdel-Magid N. et al . Serotonergic mechanisms in human allergic contact dermatitis.  Acta Derm Venereol. 2007;  87 390-396
  • 35 Verhofstad A A, Steinbusch H W, Penke B. et al . Serotonin-immunoreactive cells in the superior cervical ganglion of the rat. Evidence for the existence of separate serotonin- and catecholamine-containing small ganglionic cells.  Brain Res. 1981;  212 39-49
  • 36 Gershon M D. Serotonin: its role and receptors in enteric neurotransmission.  Adv Exp Med Biol. 1991;  294 221-230
  • 37 Chidlow G, Hiscott P S, Osborne N N. Expression of serotonin receptor mRNAs in human ciliary body: a polymerase chain reaction study.  Graefes Arch Clin Exp Ophthalmol. 2004;  242 259-264
  • 38 Newman C, Wang D, Cutz E. Serotonin (5-hydroxytryptamine) expression in pulmonary neuroendocrine cells (NE) and a netumor cell line.  Adv Exp Med Biol. 1993;  337 73-78
  • 39 Roper S D. Signal transduction and information processing in mammalian taste buds.  Pflugers Arch. 2007;  454 759-776
  • 40 Barbosa R M, Silva A M, Tome A R. et al . Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics.  J Physiol. 1998;  510 (Pt 1) 135-143
  • 41 Ikeda K, Tojo K, Otsubo C. et al . 5-hydroxytryptamine synthesis in HL-1 cells and neonatal rat cardiocytes.  Biochem Biophys Res Commun. 2005;  328 522-525
  • 42 Matsuda M, Imaoka T, Vomachka A J. et al . Serotonin regulates mammary gland development via an autocrine-paracrine loop.  Dev Cell. 2004;  6 193-203
  • 43 Meyer-Bernstein E L, Morin L P. Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation.  J Neurosci. 1996;  16 2097-2111
  • 44 Lerchl A. Biological rhythms in the context of light at night (LAN).  Neuro Endocrinol Lett. 2002;  23 Suppl 2 23-27
  • 45 Bulian D, Pierpaoli W. The pineal gland and cancer. I. Pinealectomy corrects congenital hormonal dysfunctions and prolongs life of cancer-prone C 3 H/He mice.  J Neuroimmunol. 2000;  108 131-135
  • 46 Pierpaoli W, Bulian D, Arrighi S. Transferrin treatment corrects aging-related immunologic and hormonal decay in old mice.  Exp Gerontol. 2000;  35 401-408
  • 47 Reuss S, Concemius W, Stehle J. et al . Effects of electrical stimulation of the superior cervical ganglia on the number of ”synaptic” ribbons and the activity of melatonin-forming enzymes in the rat pineal gland.  Anat Embryol (Berl). 1989;  179 341-345
  • 48 Korf H W, Gall von C. Mice, melatonin and the circadian system.  Mol Cell Endocrinol. 2006;  252 57-68
  • 49 Reiter R J, Leppaluoto J. Melatonin as a hormone and an antioxidant: implications for organisms at high latitudes.  Int J Circumpolar Health. 1997;  56 4-11
  • 50 Walther D J, Bader M. A unique central tryptophan hydroxylase isoform.  Biochem Pharmacol. 2003;  66 1673-1680
  • 51 Walther D J, Peter J U, Bashammakh S. et al . Synthesis of serotonin by a second tryptophan hydroxylase isoform.  Science. 2003;  299 76
  • 52 Gutknecht L, Waider J, Kraft S. et al . Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice.  J Neural Transm. 2008;  115 1127-1132
  • 53 Weihe E, Schafer M K, Erickson J D. et al . Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat.  J Mol Neurosci. 1994;  5 149-164
  • 54 Peter D, Liu Y, Sternini C. et al . Differential expression of two vesicular monoamine transporters.  J Neurosci. 1995;  15 6179-6188
  • 55 Erickson J D, Schafer M K, Bonner T I. et al . Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter.  Proc Natl Acad Sci U S A. 1996;  93 5166-5171
  • 56 Haase J, Killian A M, Magnani F. et al . Regulation of the serotonin transporter by interacting proteins.  Biochem Soc Trans. 2001;  29 722-728
  • 57 Waldmeier P C. Amine oxidases and their endogenous substrates (with special reference to monoamine oxidase and the brain).  J Neural Transm Suppl. 1987;  23 55-72
  • 58 Rodriguez M J, Saura J, Billett E. et al . MAO-A and MAO-B localisation in human lung and spleen.  Neurobiology (Bp). 2000;  8 243-248
  • 59 Rodriguez M J, Saura J, Finch C C. et al . Localization of monoamine oxidase A and B in human pancreas, thyroid, and adrenal glands.  J Histochem Cytochem. 2000;  48 147-151
  • 60 Torres G E, Gainetdinov R R, Caron M G. Plasma membrane monoamine transporters: structure, regulation and function.  Nat Rev Neurosci. 2003;  4 13-25
  • 61 Blakely R D, De Felice L J, Hartzell H C. Molecular physiology of norepinephrine and serotonin transporters.  J Exp Biol. 1994;  196 263-281
  • 62 Chen J C, Tonkiss J, Galler J R. et al . Prenatal protein malnutrition in rats enhances serotonin release from hippocampus.  J Nutr. 1992;  122 2138-2143
  • 63 Ni W, Watts S W. 5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter (SERT).  Clin Exp Pharmacol Physiol. 2006;  33 575-583
  • 64 Ramamoorthy S, Cool D R, Mahesh V B. et al . Regulation of the human serotonin transporter. Cholera toxin-induced stimulation of serotonin uptake in human placental choriocarcinoma cells is accompanied by increased serotonin transporter mRNA levels and serotonin transporter-specific ligand binding.  J Biol Chem. 1993;  268 21 626-21 631
  • 65 Jayanthi L D, Ramamoorthy S, Mahesh V B. et al . Calmodulin-dependent regulation of the catalytic function of the human serotonin transporter in placental choriocarcinoma cells.  J Biol Chem. 1994;  269 14424-14429
  • 66 Miller K J, Hoffman B J. Adenosine A 3 receptors regulate serotonin transport via nitric oxide and cGMP.  J Biol Chem. 1994;  269 27351-27356
  • 67 Qian Y, Galli A, Ramamoorthy S. et al . Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression.  J Neurosci. 1997;  17 45-57
  • 68 Zhu C B, Hewlett W A, Francis S H. et al . Stimulation of serotonin transport by the cyclic GMP phosphodiesterase-5 inhibitor sildenafil.  Eur J Pharmacol. 2004;  504 1-6
  • 69 Samuvel D J, Jayanthi L D, Bhat N R. et al . A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression.  J Neurosci. 2005;  25 29-41
  • 70 Bengel D, Heils A, Petri S. et al . Gene structure and 5’-flanking regulatory region of the murine serotonin transporter.  Brain Res Mol Brain Res. 1997;  44 286-292
  • 71 Lesch K P, Balling U, Gross J. et al . Organization of the human serotonin transporter gene.  J Neural Transm Gen Sect. 1994;  95 157-162
  • 72 Hoyer D, Clarke D E, Fozard J R. et al . International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin).  Pharmacol Rev. 1994;  46 157-203
  • 73 Raymond J R, Mukhin Y V, Gelasco A. et al . Multiplicity of mechanisms of serotonin receptor signal transduction.  Pharmacol Ther. 2001;  92 179-212
  • 74 Francken B J, Jurzak M, Vanhauwe J F. et al . The human 5-ht5A receptor couples to Gi/Go proteins and inhibits adenylate cyclase in HEK 293 cells.  Eur J Pharmacol. 1998;  361 299-309
  • 75 Aune T M, Golden H W, McGrath K M. Inhibitors of serotonin synthesis and antagonists of serotonin 1A receptors inhibit T lymphocyte function in vitro and cell-mediated immunity in vivo.  J Immunol. 1994;  153 489-498
  • 76 Marazziti D, Marracci S, Palego L. et al . Localization and gene expression of serotonin 1A (5 HT1A) receptors in human brain postmortem.  Brain Res. 1994;  658 55-59
  • 77 Compaan J C, Groenink L, Gugten van der J. et al . 5-HT1A receptor agonist flesinoxan enhances Fos immunoreactivity in rat central amygdala, bed nucleus of the stria terminalis and hypothalamus.  Eur J Neurosci. 1996;  8 2340-2347
  • 78 Drevets W C, Frank E, Price J C. et al . PET imaging of serotonin 1A receptor binding in depression.  Biol Psychiatry. 1999;  46 1375-1387
  • 79 Barnes N M, Sharp T. A review of central 5-HT receptors and their function.  Neuropharmacology. 1999;  38 1083-1152
  • 80 Kahn R S, Trestman R, Lawlor B A. et al . Effects of ipsapirone in healthy subjects: a dose-response study.  Psychopharmacology (Berl). 1994;  114 155-160
  • 81 Izquierdo I, Medina J H. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures.  Neurobiol Learn Mem. 1997;  68 285-316
  • 82 Rausch J L, Johnson M E, Kasik K E. et al . Temperature regulation in depression: functional 5 HT1A receptor adaptation differentiates antidepressant response.  Neuropsychopharmacology. 2006;  31 2274-2280
  • 83 Sargent P A, Kjaer K H, Bench C J. et al . Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100 635: effects of depression and antidepressant treatment.  Arch Gen Psychiatry. 2000;  57 174-180
  • 84 Lundberg J, Borg J, Halldin C. et al . A PET study on regional coexpression of 5-HT1A receptors and 5-HTT in the human brain.  Psychopharmacology (Berl). 2007;  195 425-433
  • 85 Bell R, Hobson H. 5-HT1A receptor influences on rodent social and agonistic behavior: a review and empirical study.  Neurosci Biobehav Rev. 1994;  18 325-338
  • 86 Boer S F, Lesourd de M, Mocaer E. et al . Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-hydroxytryptamine1A receptors: A comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100 635.  J Pharmacol Exp Ther. 1999;  288 1125-1133
  • 87 Heisler L K, Chu H M, Brennan T J. et al . Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice.  Proc Natl Acad Sci U S A. 1998;  95 15049-15054
  • 88 Parks C L, Robinson P S, Sibille E. et al . Increased anxiety of mice lacking the serotonin1A receptor.  Proc Natl Acad Sci USA. 1998;  95 10734-10739
  • 89 Ramboz S, Oosting R, Amara D A. et al . Serotonin receptor 1A knockout: an animal model of anxiety-related disorder.  Proc Natl Acad Sci U S A. 1998;  95 14476-14481
  • 90 Razzaque Z, Pickard J D, Ma Q P. et al . 5-HT1B-receptors and vascular reactivity in human isolated blood vessels: assessment of the potential craniovascular selectivity of sumatriptan.  Br J Clin Pharmacol. 2002;  53 266-274
  • 91 Roy A, Brand N J, Yacoub M H. Expression of 5-hydroxytryptamine receptor subtype messenger RNA in interstitial cells from human heart valves.  J Heart Valve Dis. 2000;  9 256-260
  • 92 Uddman R, Longmore J, Cardell L O. et al . Expression of 5-HT1B receptors in human nasal mucosa.  Acta Otolaryngol. 2001;  121 403-406
  • 93 Varnas K, Hurd Y L, Hall H. Regional expression of 5-HT1B receptor mRNA in the human brain.  Synapse. 2005;  56 21-28
  • 94 Lowther S, De Paermentier F, Crompton M R. et al . The distribution of 5-HT1D and 5-HT1E binding sites in human brain.  Eur J Pharmacol. 1992;  222 137-142
  • 95 Varnas K, Hall H, Bonaventure P. et al . Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [(3)H]GR 125 743.  Brain Res. 2001;  915 47-57
  • 96 Brunner D, Buhot M C, Hen R. et al . Anxiety, motor activation, and maternal-infant interactions in 5 HT1B knockout mice.  Behav Neurosci. 1999;  113 587-601
  • 97 Malleret G, Hen R, Guillou J L. et al . 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze.  J Neurosci. 1999;  19 6157-6168
  • 98 Ramboz S, Saudou F, Amara D A. et al . 5-HT1B receptor knock out – behavioral consequences.  Behav Brain Res. 1996;  73 305-312
  • 99 Saudou F, Amara D A, Dierich A. et al . Enhanced aggressive behavior in mice lacking 5-HT1B receptor.  Science. 1994;  265 1875-1878
  • 100 Agosti R M. 5 HT1F- and 5 HT7-receptor agonists for the treatment of migraines.  CNS Neurol Disord Drug Targets. 2007;  6 235-237
  • 101 Pascual J, del Arco C, Romon T. et al . Autoradiographic distribution of [3 H]sumatriptan-binding sites in post-mortem human brain.  Cephalalgia. 1996;  16 317-322
  • 102 Bruinvels A T, Landwehrmeyer B, Gustafson E L. et al . Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain.  Neuropharmacology. 1994;  33 367-386
  • 103 Ishida T, Hirata K, Sakoda T. et al . Identification of mRNA for 5-HT1 and 5-HT2 receptor subtypes in human coronary arteries.  Cardiovasc Res. 1999;  41 267-274
  • 104 Pierce P A, Xie G X, Meuser T. et al . 5-Hydroxytryptamine receptor subtype messenger RNAs in human dorsal root ganglia: a polymerase chain reaction study.  Neuroscience. 1997;  81 813-819
  • 105 Cook E H Jr, Fletcher K E, Wainwright M. et al . Primary structure of the human platelet serotonin 5-HT2A receptor: identify with frontal cortex serotonin 5-HT2A receptor.  J Neurochem. 1994;  63 465-469
  • 106 Nagatomo T, Rashid M, Abul Muntasir H. et al . Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.  Pharmacol Ther. 2004;  104 59-81
  • 107 Busatto G F, Pilowsky L S, Costa D C. et al . Initial evaluation of 123I-5-I-R91150, a selective 5-HT2A ligand for single-photon emission tomography, in healthy human subjects.  Eur J Nucl Med. 1997;  24 119-124
  • 108 Pompeiano M, Palacios J M, Mengod G. Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors.  Brain Res Mol Brain Res. 1994;  23 163-178
  • 109 Dwivedi Y, Pandey G N. Quantitation of 5 HT2A receptor mRNA in human postmortem brain using competitive RT-PCR.  Neuroreport. 1998;  9 3761-3765
  • 110 Lauterbach E C, Abdelhamid A, Annandale J B. Posthallucinogen-like visual illusions (palinopsia) with risperidone in a patient without previous hallucinogen exposure: possible relation to serotonin 5 HT2a receptor blockade.  Pharmacopsychiatry. 2000;  33 38-41
  • 111 Glusa E, Roos A. Endothelial 5-HT receptors mediate relaxation of porcine pulmonary arteries in response to ergotamine and dihydroergotamine.  Br J Pharmacol. 1996;  119 330-334
  • 112 Schaerlinger B, Hickel P, Etienne N. et al . Agonist actions of dihydroergotamine at 5-HT2B and 5-HT2C receptors and their possible relevance to antimigraine efficacy.  Br J Pharmacol. 2003;  140 277-284
  • 113 Schmuck K, Ullmer C, Kalkman H O. et al . Activation of meningeal 5-HT2B receptors: an early step in the generation of migraine headache?.  Eur J Neurosci. 1996;  8 959-967
  • 114 Launay J M, Schneider B, Loric S. et al . Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells.  FASEB J. 2006;  20 1843-1854
  • 115 Westberg L, Bah J, Rastam M. et al . Association between a polymorphism of the 5-HT2C receptor and weight loss in teenage girls.  Neuropsychopharmacology. 2002;  26 789-793
  • 116 Harada K, Aota M, Inoue T. et al . Anxiolytic activity of a novel potent serotonin 5-HT2C receptor antagonist FR 260 010: a comparison with diazepam and buspirone.  Eur J Pharmacol. 2006;  553 171-184
  • 117 Rex A, Bert B, Fink H. History and new developments. The pharmacology of 5-ht3 antagonists.  Pharm Unserer Zeit. 2007;  36 342-353
  • 118 Tecott L H, Maricq A V, Julius D. Nervous system distribution of the serotonin 5-HT3 receptor mRNA.  Proc Natl Acad Sci U S A. 1993;  90 1430-1434
  • 119 Votolato N A, Stern S, Caputo R M. Serotonergic antidepressants and urinary incontinence.  Int Urogynecol J Pelvic Floor Dysfunct. 2000;  11 386-388
  • 120 Varnas K, Halldin C, Pike V W. et al . Distribution of 5-HT4 receptors in the postmortem human brain--an autoradiographic study using [125I]SB 207 710.  Eur Neuropsychopharmacol. 2003;  13 228-234
  • 121 Cartier D, Jegou S, Parmentier F. et al . Expression profile of serotonin4 (5-HT4) receptors in adrenocortical aldosterone-producing adenomas.  Eur J Endocrinol. 2005;  153 939-947
  • 122 Kaumann A J, Levy F O. 5-hydroxytryptamine receptors in the human cardiovascular system.  Pharmacol Ther. 2006;  111 674-706
  • 123 Bockaert J, Claeysen S, Compan V. et al . 5-HT4 receptors.  Curr Drug Targets CNS Neurol Disord. 2004;  3 39-51
  • 124 Taniyama K, Makimoto N, Furuichi A. et al . Functions of peripheral 5-hydroxytryptamine receptors, especially 5-hydroxytryptamine4 receptor, in gastrointestinal motility.  J Gastroenterol. 2000;  35 575-582
  • 125 Nelson D L. 5-HT5 receptors.  Curr Drug Targets CNS Neurol Disord. 2004;  3 53-58
  • 126 Woolley M L, Marsden C A, Fone K C. 5-ht6 receptors.  Curr Drug Targets CNS Neurol Disord. 2004;  3 59-79
  • 127 Thomas D R, Hagan J J. 5-HT7 receptors.  Curr Drug Targets CNS Neurol Disord. 2004;  3 81-90
  • 128 Lesch K P, Zeng Y, Reif A. et al . Anxiety-related traits in mice with modified genes of the serotonergic pathway.  Eur J Pharmacol. 2003;  480 185-204

1 Die dieser Arbeit zugrunde liegenden Untersuchungen wurden durch die DFG (GK-1156, an CK und KPL, RE1632/1-5 an AR, KFO 125 an AR und KPL; SFB 581 an AS und KPL, SFB TRR 58 an AR und KPL), das BMBF (IZKF Würzburg, 01KS9603, an KPL; IZKF N-27-N, an AR) und die EU (NEWMOOD LSHM-CT-2003-503474, an KPL) gefördert.

Claudia Kriegebaum

Klinik für Psychiatrie, Psychosomatik und Psychotherapie, Universität Würzburg

Füchsleinstr. 15

97080 Würzburg

Email: claudia.kriegebaum@web.de

    >