Semin Respir Crit Care Med 2009; 30(5): 531-538
DOI: 10.1055/s-0029-1238911
© Thieme Medical Publishers

Genetics of Cystic Fibrosis

Sherstin T. Lommatzsch1 , Robert Aris1
  • 1Division of Pulmonary and Critical Care Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
Further Information

Publication History

Publication Date:
16 September 2009 (online)

ABSTRACT

Cystic fibrosis (CF) is a complicated disease involving many organ systems. Identification of the cystic fibrosis transmembrane regulator (CFTR) genetic code has not only enhanced our understanding of the mechanism of CF pathology but has also provided explanations for phenotypic variation. Additionally, genetic testing has refined our ability to identify patients with CF and CF-related illnesses.

Genetic mutations may be grouped by class (I–VI) and are directly related to the quantity of CFTR protein produced. This has direct implications regarding the severity of disease and has suggested organ-specific sensitivity to the presence of normally functioning CFTR. Further, it has improved understanding of the mechanism behind seemingly organ-specific manifestations of CF, such as congenital bilateral absence of the vas deferens (CBVAD).

REFERENCES

  • 1 Littlewood J M. History of cystic fibrosis. In: Hodson M, Geddes D, Bush A Cystic Fibrosis. London; Hodder Arnold 2007: 3-19
  • 2 Rosenstein B J, Cutting G R. Cystic Fibrosis Foundation Consensus Panel . The diagnosis of cystic fibrosis: a consensus statement.  J Pediatr. 1998;  132 589-595
  • 3 Knowles M R, Durie P R. What is cystic fibrosis?.  N Engl J Med. 2002;  347 439-442
  • 4 Di Sant’Agnese P A, Darling R C, Perera G A, Shea E. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas; clinical significance and relationship to the disease.  Pediatrics. 1953;  12 549-563
  • 5 Cystic Fibrosis Transmembrane Conductance Regulator .CFTR. 1998 http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=602421 Accessed April 2009
  • 6 Zielenski J. Genotype and phenotype in cystic fibrosis.  Respiration. 2000;  67 117-133
  • 7 Rowe S M, Miller S, Sorscher E J. Cystic fibrosis.  N Engl J Med. 2005;  352 1992-2001
  • 8 Nissim-Rafinia M, Kerem B, Kerem E. Molecular biology of cystic fibrosis: CFTR processing and functions, and classes of mutations. In: Hodson M, Geddes D, Bush A Cystic Fibrosis. 3rd ed. London; Hodder Arnold 2007: 49-58
  • 9 Welsh M J, Smith A E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis.  Cell. 1993;  73 1251-1254
  • 10 Noone P G, Knowles M R. “CFTR-opathies”: disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations.  Respir Res. 2001;  2 328-332
  • 11 Gabriel S E, Brigman K N, Koller B H, Boucher R C, Stutts M J. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model.  Science. 1994;  266 107-109
  • 12 Hannula K, Lipsanen-Nyman M, Kristo P et al.. Genetic screening for maternal uniparental disomy of chromosome 7 in prenatal and postnatal growth retardation of unknown cause.  Pediatrics. 2002;  109 441-448
  • 13 Knowles M RF, Silverman K J, Genetics L M. Diagnosis and clinical phenotype. In: Yankaskas JR, Knowles MR Cystic Fibrosis in Adults. Philadelphia; Lippincott-Raven 1999: 27-42
  • 14 Grebe T A, Seltzer W K, DeMarchi J et al.. Genetic analysis of Hispanic individuals with cystic fibrosis.  Am J Hum Genet. 1994;  54 443-446
  • 15 Dankert-Roelse J E, Mérelle M E. Review of outcomes of neonatal screening for cystic fibrosis versus non-screening in Europe.  J Pediatr. 2005;  147(3, Suppl) S15-S20
  • 16 Cystic Fibrosis Foundation .Newborn Screening. 2008. Available at http://www.cff.org/AboutCF/Testing/NewbornScreening/
  • 17 Farrell P M, Rosenstein B J, White T B Cystic Fibrosis Foundation et al. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report.  J Pediatr. 2008;  153 S4-S14
  • 18 Comeau A M, Accurso F J, White T B Cystic Fibrosis Foundation et al. Guidelines for implementation of cystic fibrosis newborn screening programs: Cystic Fibrosis Foundation workshop report.  Pediatrics. 2007;  119 e495-e518
  • 19 Rusakow L SAS, Sokol R J, Seltzer W, Hammond K, Accurso R J. Immunoreactive trypsinogen levels in infants with cystic fibrosis complicated by meconium ileus.  Screening. 1993;  2 13-17
  • 20 Wilcken B, Wiley V, Sherry G, Bayliss U. Neonatal screening for cystic fibrosis: a comparison of two strategies for case detection in 1.2 million babies.  J Pediatr. 1995;  127 965-970
  • 21 Narzi L, Lucarelli M, Lelli A et al.. Comparison of two different protocols of neonatal screening for cystic fibrosis.  Clin Genet. 2002;  62 245-249
  • 22 Cystic Fibrosis Mutation Database .Available at: http://www.genet.sickkids.on.ca/cftr/app
  • 23 Watson M S, Cutting G R, Desnick R J et al.. Cystic fibrosis population carrier screening: 2004 revision of American College of Medical Genetics mutation panel.  Genet Med. 2004;  6 387-391
  • 24 LeGrys V A, Yankaskas J R, Quittell L M, Marshall B C, Mogayzel Jr P J. Cystic Fibrosis Foundation . Diagnostic sweat testing: the Cystic Fibrosis Foundation guidelines.  J Pediatr. 2007;  151 85-89
  • 25 Serohijos A WRH, Hegedus T, Aleksandrov A A et al.. Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function.  Proc Natl Acad Sci U S A. 2008;  105 3256-3261
  • 26 Fulmer S B, Schwiebert E M, Morales M M, Guggino W B, Cutting G R. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents.  Proc Natl Acad Sci U S A. 1995;  92 6832-6836
  • 27 McNicholas C M, Guggino W B, Schwiebert E M, Hebert S C, Giebisch G, Egan M E. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.  Proc Natl Acad Sci U S A. 1996;  93 8083-8088
  • 28 Akabas M H, Kaufmann C, Cook T A, Archdeacon P. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator.  J Biol Chem. 1994;  269 14865-14868
  • 29 Nissim-Rafinia M KB, Kerem B. Splicing regulation as a potential genetic modifier.  Trends Genet. 2002;  18 123-127
  • 30 Nissim-Rafinia M, Aviram M, Randell S H et al.. Restoration of the cystic fibrosis transmembrane conductance regulator function by splicing modulation.  EMBO Rep. 2004;  5 1071-1077
  • 31 Haardt M, Benharouga M, Lechardeur D, Kartner N, Lukacs G L. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis: a novel class of mutation.  J Biol Chem. 1999;  274 21873-21877
  • 32 Chillón M, Casals T, Mercier B et al.. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens.  N Engl J Med. 1995;  332 1475-1480
  • 33 Wilschanski M, Rivlin J, Cohen S et al.. Clinical and genetic risk factors for cystic fibrosis–related liver disease.  Pediatrics. 1999;  103 52-57
  • 34 Sharer N, Schwarz M, Malone G et al.. Mutations of the cystic fibrosis gene in patients with chronic pancreatitis.  N Engl J Med. 1998;  339 645-652
  • 35 Wilschanski M, Durie P R. Patterns of GI disease in adulthood associated with mutations in the CFTR gene.  Gut. 2007;  56 1153-1163
  • 36 Noone P G, Zhou Z, Silverman L M, Jowell P S, Knowles M R, Cohn J A. Cystic fibrosis gene mutations and pancreatitis risk: relation to epithelial ion transport and trypsin inhibitor gene mutations.  Gastroenterology. 2001;  121 1310-1319
  • 37 Cohn J A, Neoptolemos J P, Feng J et al.. Increased risk of idiopathic chronic pancreatitis in cystic fibrosis carriers.  Hum Mutat. 2005;  26 303-307
  • 38 Cohn J A, Friedman K J, Noone P G, Knowles M R, Silverman L M, Jowell P S. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis.  N Engl J Med. 1998;  339 653-658
  • 39 Cohn J A. Reduced CFTR function and the pathobiology of idiopathic pancreatitis.  J Clin Gastroenterol. 2005;  39(4, Suppl 2) S70-S77
  • 40 Friedman K J, Ling S C, Lange E M et al.. Genetic modifiers of severe liver disease in cystic fibrosis.  Pediatr Pulmonol. 2005;  40(Suppl 28) 247 , abstract 170
  • 41 Taulan M, Girardet A, Guittard C et al.. Large genomic rearrangements in the CFTR gene contribute to CBAVD.  BMC Med Genet. 2007;  8 22
  • 42 Ratbi I, Legendre M, Niel F et al.. Detection of cystic fibrosis transmembrane conductance regulator (CFTR) gene rearrangements enriches the mutation spectrum in congenital bilateral absence of the vas deferens and impacts on genetic counselling.  Hum Reprod. 2007;  22 1285-1291
  • 43 The Cystic Fibrosis Genotype-Phenotype Consortium . Correlation between genotype and phenotype in patients with cystic fibrosis.  N Engl J Med. 1993;  329 1308-1313
  • 44 Timmreck L S, Gray M R, Handelin B et al.. Analysis of cystic fibrosis transmembrane conductance regulator gene mutations in patients with congenital absence of the uterus and vagina.  Am J Med Genet A. 2003;  120A 72-76
  • 45 Radpour R, Gourabi H, Dizaj A V, Holzgreve W, Zhong X Y. Genetic investigations of CFTR mutations in congenital absence of vas deferens, uterus, and vagina as a cause of infertility.  J Androl. 2008;  29 506-513
  • 46 King S J, Topliss D J, Kotsimbos T et al.. Reduced bone density in cystic fibrosis: DeltaF508 mutation is an independent risk factor.  Eur Respir J. 2005;  25 54-61

Robert ArisM.D. 

Division of Pulmonary and Critical Care Medicine, University of North Carolina School of Medicine

130 Mason Farm Rd., 4th Fl. Bioinformatics CB#7020, Chapel Hill, NC 27599

Email: aris@med.unc.edu

    >