Neuropediatrics 2009; 40(1): 6-14
DOI: 10.1055/s-0029-1224099
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

POMT1-Associated Walker-Warburg Syndrome: A Disorder of Dendritic Development of Neocortical Neurons

M. Judaš 1 , G. Sedmak 1 , M. Radoš 1 , 2 , V. Sarnavka 3 , K. Fumić 4 , T. Willer 5 , C. Gross 6 , U. Hehr 6 , S. Strahl 5 , M. Ćuk 3 , I. Barić 3
  • 1Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
  • 2Department of Radiology, Clinical Hospital Center Zagreb & School of Medicine, University of Zagreb, Zagreb, Croatia
  • 3Department of Pediatrics, Clinical Hospital Center Zagreb & School of Medicine, University of Zagreb, Zagreb, Croatia
  • 4Clinical Institute for Laboratory Diagnostics, Clinical Hospital Center Zagreb & School of Medicine, University of Zagreb, Zagreb, Croatia
  • 5Heidelberg Institute of Plant Science, Department V Cell Chemistry, Ruprecht-Karls-University Heidelberg, Germany
  • 6Center for Human Genetics, Regensburg, Germany
Further Information

Publication History

received 07.05.2008

accepted 17.04.2009

Publication Date:
28 July 2009 (online)

Abstract

We have analyzed the morphology and dendritic development of neocortical neurons in a 2.5-month-old infant with Walker-Warburg syndrome homozygotic for a novel POMT1 gene mutation, by Golgi methods. We found that pyramidal neurons frequently displayed abnormal (oblique, horizontal, or inverted) orientation. A novel finding of this study is that members of the same population of pyramidal neurons display different stages of development of their dendritic arborizations: some neurons had poorly developed dendrites and thus resembled pyramidal neurons of the late fetal cortex; for some neurons, the level of differentiation corresponded to that in the newborn cortex; finally, some neurons had quite elaborate dendritic trees as expected for the cortex of 2.5-month-old infant. In addition, apical dendrites of many pyramidal neurons were conspiciously bent to one side, irrespective to the general orientation of the pyramidal neuron. These findings suggest that Walker-Warburg lissencephaly is characterized by two hitherto unnoticed pathogenetic changes in the cerebral cortex: (a) heterochronic decoupling of dendritic maturation within the same neuronal population (with some members significantly lagging behind the normal maturational schedule) and (b) anisotropically distorted shaping of dendritic trees, probably caused by patchy displacement of molecular guidance cues for dendrites in the malformed cortex.

References

  • 1 Barkovich AJ, Kuzniecky RI, Jackson GD. et al . A developmental and genetic classification for malformations of cortical development.  Neurology. 2005;  65 1873-1887
  • 2 Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease.  J Cell Sci. 2005;  119 199-207
  • 3 Culling CFA. Handbook of histopathological techniques, 2nd edition. London: Butterworths 1963: pp. 346-347
  • 4 D’Amico A, Tessa A, Bruno C. et al . Expanding the clinical spectrum of POMT1 phenotype.  Neurology. 2006;  66 1564-1567
  • 5 Dobyns WB, Stratton RF, Greenberg F. Syndromes with lissencephaly: I: Miller-Dieker and Norman-Roberts syndromes and isolated lissencephaly.  Am J Med Genet. 1984;  18 509-526
  • 6 Dobyns WB, Kirkpatrick JB, Hittner HM. et al . Syndromes with lissencephaly. II: Walker-Warburg and cerebro-oculo-muscular syndromes and a new syndrome with type II lissencephaly.  Am J Med Genet. 1985;  22 157-195
  • 7 Dobyns WB, Pagon RA, Armstrong D. et al . Diagnostic criteria for Walker-Warburg syndrome.  Am J Med Genet. 1989;  32 195-210
  • 8 Francis F, Meyer G, Fallet-Bianco C. et al . Human disorders of cortical development: from past to present.  Eur J Neurosci. 2006;  23 877-893
  • 9 Gallyas F. Silver staining of myelin by means of physical development.  Neurol Res. 1979;  1 203-209
  • 10 Gelot A, Billette de Villemeur T, Bordaier C. et al . Developmental aspects of type II lissencephaly. Comparative study of dysplastic lesions in fetal and postnatal brains.  Acta Neuropathol. 1995;  89 72-84
  • 11 Hu H, Yang Y, Eade A. et al . Breaches of the pial basement membrane and disappearance of the glia limitans during develoment underlie the cortical lamination defect in the mouse model of muscle-eye-brain disease.  J Comp Neurol. 2007;  501 168-183
  • 12 Judaš M, Šestan N, Kostović I. Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals.  Microsc Res Techn. 1999;  45 401-419
  • 13 Judaš M, Rasin MR, Kruslin B. et al . Dendritic overgrowth and alterations in laminar phenotypes of neocortical neurons in the newborn with semilobar holoprosencephaly.  Brain Dev. 2003;  25 32-39
  • 14 Liu J, Ball SL, Yang Y. et al . A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1).  Mech Dev. 2006;  123 228-240
  • 15 Martin PT. The dystroglycanopathies: The new disorders of O-linked glycosylation.  Semin Pediatr Neurol. 2005;  152 152-158
  • 16 Miller G, Ladda RL, Towfighi J. Cerebro-ocular dysplasia – muscular dystrophy (Walker-Warburg) syndrome. Findings in 20-week-old fetus.  Acta Neuropathol. 1991;  82 234-248
  • 17 Moore SA, Saito F, Chen J. et al . Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy.  Nature. 2002;  418 422-425
  • 18 Mrzljak L, Uylings HBM, Kostović I. et al . Prenatal development of neurons in the human prefrontal cortex: 1. A qualitative Golgi study.  J Comp Neurol. 1988;  271 355-386
  • 19 Mrzljak L, Uylings HBM, Van Eden CG. et al . Neuronal development in human prefrontal cortex in prenatal and postnatal stages.  Prog Brain Res. 1990;  85 185-222
  • 20 Mrzljak L, Uylings HBM, Kostović I. et al . Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study.  J Comp Neurol. 1992;  316 485-496
  • 21 Petanjek Z, Judaš M, Kostović I. et al . Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: A layer-specific pattern.  Cereb Cortex. 2008;  18 915-929
  • 22 Polleux F, Morrow T, Ghosh A. Semaphorin 3A is a chemoattractant for cortical apical dendrites.  Nat Neurosci. 2000;  404 567-573
  • 23 Squier MV. Development of the cortical dysplasia of type II lissencephaly.  Neuropathol Appl Neurobiol. 1993;  19 203-213
  • 24 Takada K, Becker LE, Takashima S. Walker-Warburg syndrome with skeletal muscle involvement. A report of three patients.  Pediat Neurosci. 1987;  13 202-209
  • 25 Takashima S, Becker LE, Chan F. et al . A Golgi study of the cerebral cortex in Fukuyama-type congenital muscular dystrphy, Walker-type “lissencephaly”, and classical lissencephaly.  Brain Dev. 1987;  9 621-626
  • 26 Towfighi J, Sassani JW, Suzuki K. et al . Cerebro-ocular dysplasia – muscular dystrophy (COD-MD) syndrome.  Acta Neuropathol (Berl). 1984;  65 110-123
  • 27 Vajsar J, Schachter H. Walker-Warburg syndrome.  Orphanet J Rare Diseases. 2006;  1 ((29)) 1-5
  • 28 Van Reeuwijk J, Brunner HG, van Bokhoven H. Glyc-O-genetics of Walker-Warburg syndrome.  Clin Genet. 2004;  67 281-289
  • 29 Van Reeuwijk J, Maugenre S, van den Elzen C. et al . The expanding phenotype of POMT1 mutations: from Walker-Warburg syndrome to congenital muscular dystrophy, microcephaly, and mental retardation.  Hum Mutat. 2006;  27 453-459
  • 30 Van Reeuwijk J, Grewal PK, Salih MA. et al . Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome.  Hum Genet. 2007;  121 685-690
  • 31 Vukšić M, Petanjek Z, Rašin MR. et al . Perinatal growth of prefrontal layer III pyramids in Down syndrome.  Pediatr Neurol. 2002;  27 36-38
  • 32 Walker AE. Lissencephaly.  Arch Neurol Psychiat. 1942;  48 13-29
  • 33 Warburg M. Heterogeneity of congenital retinal non-attachment, falciform folds and retinal dysplasia. A guide to genetic counseling.  Hum Hered. 1976;  26 137-148
  • 34 Warburg M. Hydrocephaly, congenital retinal nonattachment, and congenital falciform fold.  Am J Ophthalmol. 1978;  85 88-94
  • 35 Wopereis S, Lefeber DJ, Morava E. et al . Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: A review.  Clin Chem. 2006;  52 574-600

Correspondence

Prof. M. Judaš

Department of Neuroscience

Croatian Institute for Brain Research

School of Medicine

University of Zagreb

Šalata 12

10000 Zagreb

Croatia

Phone: +385/1/45 96 801

Fax: +385/1/45 96 942

Email: mjudas@hiim.hr

    >