Synlett 2010(8): 1205-1208  
DOI: 10.1055/s-0029-1219810
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Synthesis of (-)-Pironetin by an Iterative Prins Cyclisation and Reductive Cleavage Strategy

J. S. Yadav*, Hissana Ather, N. Venkateswar Rao, M. Sridhar Reddy, A. R. Prasad
Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad-500 007, India
Fax: +91(40)27160512; e-Mail: yadavpub@iict.res.in;
Further Information

Publication History

Received 17 December 2009
Publication Date:
09 April 2010 (online)

Abstract

A stereoselective synthesis of pironetin, a natural product which is highly immunosuppressive and shows remarkable plant growth regulatory and antitumoral activities, is described. The approach avails successfully the high stereoselection of Prins cyclisation. The route relies, in addition, on the reductive opening of cyclic ethers, olefin metathesis, and lithium acetylide displacement of tosylate.

    References and Notes

  • 1a Kobayashi S. Tsuchiya K. Harada T. Nishide M. Kurokawa T. Nakagawa T. Shimada N. Kobayashi K.
    J. Antibiot.  1994,  47:  697 
  • 1b Kobayashi S. Tsuchiya K. Kurokawa T. Nakagawa T. Shimada N. Iitaka Y.
    J. Antibiot.  1994,  47:  703 
  • 1c Tsuchiya K. Kobayashi S. Harada T. Nishikiori T. Nakagawa T. Tatsuta K.
    J. Antibiot.  1997,  50:  259 
  • 2 Konodoh M. Usui T. Kobayashi S. Tsuchiya K. Nishikawa K. Nishikiori T. Mayumi T. Osada H. Cancer Lett.  1998,  126:  29 
  • 3 For a paper about chemical modifications of pironetin to reduce its toxicity, see: Yasui K. Tamura Y. Nakatani T. Horibe I. Kawada K. Koizumi K. Suzuki R. Ohtani M. J. Antibiot.  1996,  49:  173 
  • For examples of the Prins cyclisation, see:
  • 4a Barry CStJ. Crosby SR. Harding JR. Hughes RA. King CD. Parker GD. Willis CL. Org. Lett.  2003,  5:  2429 
  • 4b Yang X.-F. Mague JT. Li C.-J. J. Org. Chem.  2001,  66:  739 
  • 4c Aubele DL. Wan S. Floreancig PE. Angew. Chem. Int. Ed.  2005,  44:  3485 
  • 4d Barry CS. Bushby N. Harding JR. Willis CS. Org. Lett.  2005,  7:  2683 
  • 4e Cossey KN. Funk RL. J. Am. Chem. Soc.  2004,  126:  12216 
  • 4f Crosby SR. Harding JR. King CD. Parker GD. Willis CL. Org. Lett.  2002,  4:  3407 
  • 4g Marumoto S. Jaber JJ. Vitale JP. Rychnovsky SD. Org. Lett.  2002,  4:  3919 
  • 4h Kozmin SA. Org. Lett.  2001,  3:  755 
  • 4i Jaber JJ. Mitsui K. Rychnovsky SD. J. Org. Chem.  2001,  66:  4679 
  • 4j Kopecky DJ. Rychnovsky SD.
    J. Am. Chem. Soc.  2001,  123:  8420 
  • 4k Rychnovsky SD. Thomas CR. Org. Lett.  2000,  2:  1217 
  • 4l Rychnovsky SD. Yang G. Hu Y. Khire UR. J. Org. Chem.  1997,  62:  3022 
  • 4m Su Q. Panek JS. J. Am. Chem. Soc.  2004,  126:  2425 
  • 4n Yadav JS. Reddy BVS. Sekhar KC. Gunasekar D. Synthesis  2001,  885 
  • 4o Yadav JS. Reddy BVS. Reddy MS. Niranjan N. J. Mol. Catal. A: Chem.  2004,  210:  99 
  • 4p Yadav JS. Reddy BVS. Reddy MS. Niranjan N. Prasad AR. Eur. J. Org. Chem.  2003,  1779 
  • For our previous applications of Prins cyclisation, see:
  • 5a Yadav JS. Reddy MS. Rao PP. Prasad AR. Tetrahedron Lett.  2006,  47:  4397 
  • 5b Yadav JS. Reddy MS. Prasad AR. Tetrahedron Lett.  2006,  47:  4937 
  • 5c Yadav JS. Reddy MS. Prasad AR. Tetrahedron Lett.  2005,  46:  2133 
  • 5d Yadav JS. Reddy MS. Prasad AR. Tetrahedron Lett.  2006,  47:  4995 
  • 5e Yadav JS. Reddy MS. Rao PP. Prasad AR. Synlett  2007,  2049 
  • 5f Yadav JS. Rao PP. Reddy MS. Rao NV. Prasad AR. Tetrahedron Lett.  2007,  48:  1469 
  • 5g Yadav JS. Kumar NN. Reddy MS. Prasad AR. Tetrahedron  2006,  63:  2689 
  • 5h Yadav JS. Kumar Rao PP. Reddy MS. Prasad AR. Tetrahedron Lett.  2008,  49:  5427 
  • As shown below, compound 10 was subjected to TBS ether cleavage and then transformed to the corresponding acetonide to confirm the anti relationship of hydroxyl groups by examination of the ¹³C NMR spectrum. See:
  • 6a Rychnovsky SD. Skalitzky DJ. Tetrahedron Lett.  1990,  31:  945 
  • 6b Evans DA. Rieger DL. Gage JR. Tetrahedron Lett.  1990,  39:  7099 ; One broad coupling (J = 9.0 Hz) of 3-H of the acetonide in Scheme 3 in its ¹H NMR supported the stereochemistry of the 4-α-methyl group
  • 7 Nicolaou KC. Koftis TV. Vyskocil S. Petrovic G. Ling T. Yamada YMA. Tang W. Frederick MO. Angew. Chem. Int. Ed.  2004,  43:  4318 
  • 8a Toshima K. Jyojima T. Miyamoto N. Katohno M. Nakata M. Mastumura S. J. Org. Chem.  2001,  66:  1708 
  • 8b Moune S. Niel G. Busquet M. Eggleston I. Jouin P. J. Org. Chem.  1997,  62:  3332 
  • 9 Imoto H. Matsumoto M. Odaka H. Sakamoto J. Kimura H. Nonaka M. Kiyota Y. Momose Y. Chem. Pharm. Bull.  2004,  52:  120 
  • 10a Scholl S. Ding S. Lee CW. Grubbs RH. Org. Lett.  1999,  1:  953 
  • 10b Sanford MS. Love JA. Grubbs RH. J. Am. Chem. Soc.  2001,  123:  6543 
  • 10c Shibahara S. Fujino M. Tashiro Y. Takahashi K. Ishihara J. Hatakeyama S. Org. Lett.  2008,  10:  2139 
  • 10d Schwab P. France MB. Ziller JW. Grubbs RH. Angew. Chem., Int. Ed. Engl.  1995,  34:  2039 ; Angew. Chem. 1995, 107, 2179
11

Spectroscopic and Physical Data of Selected Compounds(2 R ,3 S ,4 R ,6 R )-2-[( S )-1-(Benzyloxy)propan-2-yl]-tetra-hydro-6-hydroxymethyl)-3-methyl-2 H -pyran-4-ol (5)
[α]D ²5 +18.5 (c 1.0, CHCl3); R f  = 0.3 (SiO2, 60% EtOAc in hexane). IR (neat): 3390, 2926, 2859, 1359, 1158, cm. ¹H NMR (300 MHz, CDCl3): δ = 7.23-7.30 (m, 5 H), 4.39-4.55 (m, 2 H), 3.21-3.56 (m, 7 H), 2.02-2.11 (m, 1 H), 1.77-1.86 (m, 1 H), 1.22-1.44 (m, 2 H), 0.96 (d, 3 H, J = 6.64 Hz), 0.85 (d, 3 H, J = 6.64 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 138.53, 128.30, 127.48, 79.47, 75.50, 73.33, 73.12, 72.97, 65.83, 40.40, 36.77, 34.10, 12.04, 9.54. ESI-HRMS: m/z
[M + Na]+ calcd for C17H26NaO4: 317.1728; found: 317.1719.
(2 S ,3 R ,4 R ,5 R )-1-(Benzyloxy)-5-( tert -butyldimethyl-silyloxy)-2,4-dimethyloct-7-en-3-ol (10) [α]D ²5 +13.9 (c 0.65, CHCl3); R f  = 0.6 (SiO2, 10% EtOAc in hexane). IR (neat): 3500, 2930, 2855, 1461, 1063, 911 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.30-7.27 (m, 5 H), 5.81-5.67 (m, 1 H), 5.08-4.49 (m, 2 H), 4.45-4.56 (m, 2 H), 3.97-3.92 (m, 1 H), 3.75 (d, 1 H, J = 9.82 Hz), 3.53-3.39 (m, 2 H), 2.37-2.20 (m, 2 H), 1.85-1.70 (m, 2 H), 1.46 (br, OH), 0.89-0.87 (m, 12 H), 0.75 (d, 3 H, J = 6.8 Hz), 0.06 (s, 3 H), 0.09 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 138.60, 135.13, 128.24, 127.47, 127.36, 116.90, 116.67, 81.09, 73.86, 72.82, 71.15, 60.70, 40.55, 39.38, 35.30, 26.02, 18.2, 9.7, 9.1,
-3.17, -4.37. ESI-HRMS: m/z [M + Na]+calcd for C23H40NaO3Si: 415.2644; found: 415.4635.
(3 E ,6 R ,7 S ,8 R ,9 S ,11 E )-8-Methoxy-7,9-dimethyltridec-3,11-dien-6-ol (4)
[α]D ²5 +4.0 (c 1.3, CHCl3); R f  = 0.5 (SiO2, 20% EtOAc in hexane); IR (neat): 3420, 2966, 2931, 1715, 1457, 1083, 971 cm; ¹H NMR (300 MHz, CDCl3): δ = 5.62-5.29 (m, 4 H), 3.90-3.83 (m, 1 H), 3.48 (s, 3 H), 2.98 (m, 1 H), 2.57 (br, 1 H, OH), 2.27-1.75 (m, 8 H), 1.67 (d, 3 H, J = 6.40 Hz), 0.98 (t, 3 H, J = 7.34 Hz), 0.92 (d, 3 H, J = 7.9 Hz), 0.89 (d, 3 H, J = 7.8 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 134.69, 129.18, 126.58, 125.63, 89.80, 70.6, 61.63, 38.10, 37.8, 37.2, 36.05, 25.63, 17.93, 14.57, 13.8, 10.91. ESI-HRMS: m/z [M + Na]+calcd for C16H30NaO2: 277.1987; found: 277.1977.
(2 R ,3 S ,4 R ,6 R )-3-Ethyl-tetrahydro-6-[( E ,2 S ,3 R ,4 S )-3-methoxy-4-methyloct-6-en-2-yl]-2-vinyl-2 H -pyran-4-ol (3a)
[α]D ²5 -27.6 (c 0.65, CHCl3). IR (neat): 3427, 2967, 2929, 1718, 1457, 1089, 759 cm. ¹H NMR (300 MHz, CDCl3):
δ = 5.88-5.71 (m, 1 H), 5.49-5.36 (m, 2 H), 5.26-5.11 (m, 2 H), 3.69-3.45 (m, 3 H), 3.33 (s, 3 H), 3.05 (dd, 1 H, J = 9.55, 2.94 Hz), 2.32-2.27 (m, 1 H), 2.08-1.95 (m, 2 H), 1.76-1.41 (m, 7 H), 1.25-1.14 (m, 1 H), 1.02-0.75 (m, 11 H). ¹³C NMR (75 MHz, CDCl3): δ = 130.65, 130.44, 128.71, 126.13, 84.8, 80.25, 74.34, 73.43, 70.67, 50.97, 49.21, 40.54, 38.99, 38.25, 35.49, 19.41, 17.96, 11.86, 10.18. ESI-HRMS: m/z [M + Na]+ calcd for C19H34NaO3: 333.2405; found: 333.2409.
(4 R ,5 R ,7 R ,8 S ,9 R ,10 S ,12 E )-4-Ethyl-9-methoxy-5-(methoxymethoxy)-8,10-dimethyltetradeca-2,12-dien-7-yl acetate (17)
IR (neat): 2929, 2855, 1740, 1244, 1097, 966 cm. ¹H NMR (300 MHz, CDCl3): δ = 5.51-5.03 (m, 5 H), 4.63-4.59 (m, 2 H), 3.56-3.41 (m, 1 H), 3.39 (s, 3 H), 3.37 (s, 3 H), 2.84-2.77 (m, 1 H), 2.03 (s, 3 H), 2.17-1.91 (m, 3 H), 1.66 (d, 6 H, J = 5.28 Hz), 1.75-1.50 (m, 4 H), 1.45-1.28 (m, 2 H), 0.92-0.79 (m, 9 H). ¹³C NMR (75 MHz, CDCl3): δ = 170.40, 134.51, 132.50, 125.50, 125.5, 96.30, 88.51, 66.99, 68.30, 58.0, 55.62, 49.06, 39.52, 36.42, 35.50, 33.75, 23.65, 21.20, 19.53, 19.35, 15.30, 12.42, 10.25. ESI-HRMS: m/z [M + Na]+ calcd for C23H24NaO5: 421.2929; found: 421.2923.
(5 R ,6 R )-5-Ethyl-5,6-dihydro-6-[( E ,2 R ,3 S ,4 R ,5 S )-2-hydroxy-4-methoxy-3,5-dimethylnon-7-enyl]pyran-2-one (1)
[α]D ²5 -139.5 (c 0.35, CHCl3); R f  = 0.3 (SiO2, 50% EtOAc in hexane); IR (neat): 3479, 2965, 2931, 1718, 1459, 1384, 1088 cm. ¹H NMR (300 MHz, CDCl3): δ = 7.04 (dd, 1 H, J = 9.82, 6.04 Hz), 6.04 (d, 1 H, J = 9.82 Hz), 5.50-5.32 (m, 2 H), 4.76 (m, 1 H), 4.23 (br d, 1 H), 3.47 (s, 3 H), 3.39 (br, OH), 2.36-2.27 (m, 1 H), 3.00-2.97 (m, 1 H), 2.13-2.06 (m, 1 H), 1.97-1.63 (m, 6 H), 1.67 (d, 3 H, J = 5.27 Hz), 1.56-1.45 (m, 1 H), 1.01 (t, 3 H, J = 7.18 Hz), 0.97 (d, 3 H, J = 7.18 Hz), 0.95 (d, 3 H, J = 6.70 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 164.1, 144.8, 121.5, 96.1, 75.2, 69.7, 55.4, 41.8, 29.4, 20.1.164.75, 150.77, 130.08, 126.91, 120.72, 90.2, 77.73, 67.17, 61.55, 39.16, 39.05, 37.32, 36.73, 35.96, 20.76, 17.91, 15.1, 11.88, 10.96. ESI-HRMS: m/z [M + Na]+ calcd for C19H32NaO4 347.2198; found: 347.2205.