Synlett 2010(6): 897-900  
DOI: 10.1055/s-0029-1219533
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Efficient Procedure for the Synthesis of Morpholin-2-one-3-carboxamide Derivatives in Good Diastereoselectivity by the Ugi Reaction

Deguang Zhu, Ruijiao Chen, Haibo Liang, Sheng Li, Li Pan, Xiaochuan Chen*
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China
Fax: +86(28)85413712; e-Mail: chenxc@scu.edu.cn;
Further Information

Publication History

Received 17 November 2009
Publication Date:
18 February 2010 (online)

Abstract

A series of 5-substituted morpholin-2-one-3-carbox­amide derivatives were efficiently synthesized by a Ugi three-­component reaction involving chiral 5,6-dihydro[1,4]oxazin-2-one substrates, isocyanides and carboxylic acids. The newly formed chiral center in the product was obtained in good diastereoselectivity.

    References and Notes

  • For reviews, see:
  • 1a Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 1b Dömling A. Chem. Rev.  2006,  106:  17 
  • 1c Boger DL. Desharnais J. Capps K. Angew. Chem. Int. Ed.  2003,  42:  4138 
  • 2a He Q. Zhu X. Shi M. Zhao M. Zhao J. Zhang S. Miao J. Bioorg. Med. Chem.  2007,  15:  3889 
  • 2b Raparti V. Chitre T. Bothara K. Kumar V. Dangre S. Khachane C. Gore S. Deshmane B. Eur. J. Med. Chem.  2009,  44:  3954 
  • 2c Arcelli A. Balducci D. Neto SdFE. Porzi G. Sandri M. Tetrahedron: Asymmetry  2007,  18:  562 
  • 3 Kim YB. Choi EH. Keum G. Kang SB. Lee DH. Koh HY. Kim Y. Org. Lett.  2001,  3:  4149 
  • 4 Ku IW. Cho S. Doddareddy MR. Jang MS. Keum JG. Lee JH. Chung BY. Kim Y. Rhim H. Kang SB. Bioorg. Med. Chem. Lett.  2006,  16:  5244 
  • 5a Antunes JE. Freitas MP. da Cunha EFF. Ramalho TC. Rittner R. Bioorg. Med. Chem.  2008,  16:  7599 
  • 5b Gao F. Sexton PM. Christopoulos A. Miller LJ. Bioorg. Med. Chem. Lett.  2008,  18:  4401 
  • 5c Repine JT. Himmelsbach RJ. Hodges JC. Kaltenbronn JS. Sircar I. Skeean RW. Brennan ST. Hurley TR. Lunney E. Humblet CC. Weishaar RE. Rapundalo S. Ryan MJ. Taylor DG. Olson SC. Michniewicz BM. Kornberg BE. Belmont DT. Taylor MD.
    J. Med. Chem.  1991,  34:  1935 
  • 5d Gyöergydeák Z. Hadady Z. Felföeldi N. Krakomperger A. Nagy V. Tóth M. Brunyánszki A. Docsa T. Gergely P. Somsák L. Bioorg. Med. Chem.  2004,  12:  4861 
  • 6a Shafer CM. Morse DI. Molinski TF. Tetrahedron  1996,  52:  14475 
  • 6b Shafer CM. Molinski TF. J. Org. Chem.  1996,  61:  2044 
  • 6c Chen X. Chen J. Zhu J. Synthesis  2006,  4081 
  • 8 Harwood LM. Vines KJ. Drew MGB. Synlett  1996,  1051 
  • 9a Tohma S. Endo A. Kan T. Fukuyama T. Synlett  2001,  1179 
  • 9b Tohma S. Rikimaru K. Endo A. Shimamoto K. Kan T. Fukuyama T. Synthesis  2004,  909 
  • 10a Ugi I. Dffermann K. Angew. Chem. Int. Ed.  1963,  2:  624 
  • 10b Ugi I. Kaufhold GL. Ann. Chem.  1967,  709:  11 
  • 10c Madson U. Frydenvang K. Ebert B. Johemsen TN. Brehm L. Krogsgaard-Larsen P. J. Med. Chem.  1996,  39:  183 
  • 10d Eberle G. Ugi I. Angew. Chem. Int. Ed.  1976,  15:  492 
  • 11a Merquarding D. Hoffman P. Heitzer H. Ugi I. J. Am. Chem. Soc.  1970,  92:  1969 
  • 11b Demharter A. Ugi I.
    J. Prakt. Chem.  1993,  335:  244 
  • 11c Siglmuller F. Herrmam R. Ugi I. Tetrahedron  1986,  42:  5931 
  • 12a Kunz H. Pfrengle W. J. Am. Chem. Soc.  1988,  110:  651 
  • 12b Kunz H. Pfrangle W. Tetrahedron  1988,  44:  5487 
  • 12c Lehnhoff S. Goebel M. Karl RM. Klosel R. Ugi I. Angew. Chem. Int. Ed.  1995,  34:  1104 
  • 12d Drabik JM. Achatz J. Ugi I. Proc. Est. Acad. Sci. Chem.  2002,  51:  156 
  • 13a Demharter A. Hörl W. Herdtweck E. Ugi I. Angew. Chem., Int. Ed. Engl.  1996,  35:  173 
  • 13b Dyker G. Breitenstein K. Henkel G. Tetrahedron: Asymmetry  2002,  13:  1929 
  • 13c Park SJ. Keum G. Kang SB. Koh HY. Kim Y. Lee DH. Tetrahedron Lett.  1998,  39:  7109 
  • 13d Ugi I. Demharter A. Hörl W. Schmid T. Tetrahedron  1996,  52:  11657 
  • 13e Zimmer R. Ziemer A. Gruner M. Brudgam I. Hartl H. Reissig HU. Synthesis  2001,  1649 
7

General procedure for the synthesis of 4: To a solution of 1 were added, successively, acid 3 and isocyanide 2 under inert atmosphere. The resulting mixture was stirred at room temperature until completion (TLC), and concentrated in vacuo. The residue was purified by flash chromatography on silica gel column to give product 4

14

4a: [a]D ²8 +4 (c 0.5, CHCl3). IR (neat): 3337, 2963, 2932, 1752, 1666, 1539, 1463, 1391, 1289, 1108 cm. ¹H NMR (400 MHz, CDCl3): d (two rotamers) = 7.66-7.61 (m, 4 H), 7.46-7.40 (m, 6 H), 5.98 (s, 1 H), 4.95 (s, 0.8 H), 4.82 (dd, J = 2.7, 11.5 Hz, 1 H), 4.76 (s, 0.2 H), 4.71 (dd, J = 1.3, 11.4 Hz, 0.8 H), 4.58 (m, 0.2 H), 4.47 (dd, J = 2.8, 12.0 Hz, 0.2 H), 3.93 (m, 0.8 H), 3.86 (dd, J = 4.0, 9.6 Hz, 0.2 H), 3.70 (t, J = 10.6 Hz, 0.8 H), 3.59 (dd, J = 5.3, 10.7 Hz, 0.8 H), 3.52 (t, J = 9.6 Hz, 0.2 H), 1.89 (s, 0.6 H), 1.82 (s, 2.4 H), 1.36 (s, 1.8 H), 1.33 (s, 7.2 H), 1.06 (s, 7.2 H),
1.05 (s, 1.8 H) ppm. ¹³C NMR (100 MHz, CDCl3): d (two rotamers) = 169.9, 169.8, 165.7, 163.3, 162.2, 162.1, 135.4, 135.3, 132.5, 131.9, 130.2, 130.1, 127.9, 127.7, 127.6, 66.7, 65.8, 62.7, 61.0, 60.7, 60.2, 52.9, 52.6, 52.2, 50.0, 29.6, 28.3, 26.6, 21.1, 20.4, 19.0 ppm. HRMS: m/z [M + Na]+ calcd for C28H38N2O5Si: 533.2448; found: 533.2437.