SYNLETT
Spotlight 306

This feature focuses on a reagent chosen by a postgraduate, highlighting the uses and preparation of the reagent in current research

2-Methyl-2-propanesulfinamide (Ellman’s Sulfinamide): A Versatile Chiral Reagent

Compiled by Xiao-Yu Guan

Xiao-Yu Guan was born in Henan, P. R. of China in 1980. He received a B.Sc. in Chemistry from Southwest Normal University in 2003, and is now working towards his Ph.D. under the supervision of Prof. Wen-hao Hu at the Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences. His current research is focused on multi-component reaction and asymmetric synthesis.

Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, P. R. of China
E-mail: guanxy04@mails.gucas.ac.cn

Introduction

Enantiopure 2-methyl-2-propanesulfinamide (tert-butanesulfinamide) was introduced by Ellman in 1997.1 As a chiral ammonia equivalent, it can easily condense with aldehydes and ketones to afford tert-butanesulfinyl imines in high yields (Scheme 1).2 The tert-butanesulfinyl group activates these imines for the addition of many different classes of nucleophiles and serves as a powerful chiral directing group to provide products with generally high diastereoselectivity. Subsequent removal of the tert-butanesulfinyl group under mild conditions cleanly provides the amine products. Many versatile building blocks3 including syn- and anti-1,2- or 1,3-amino alcohols,4,5 a-branched and α,α-dibranched amines,6 α- or β-amino acids and esters7,8 can be efficiently synthesized by using this methodology. In addition, this methodology can also be used in the synthesis of antibiotics, biologically active compounds, and other complex natural products.9 Furthermore, tert-butanesulfinamide has been used in the synthesis of asymmetric ligands10 or catalysts11, and in a few cases, appears as the chirality-bearing component.12

Abstracts

(A) Ellman and co-workers have demonstrated the facile synthesis of chiral α,α-dibranched amines through 1,2-addition of organolithium reagents to N-tert-butanesulfinyl ketimines, which proceeds with high yields and diastereoselectivities.6b

(B) N-tert-Butylsulfinyl imines have been used in a highly diastereoselective multi-component reaction of phenyldiazocacetates, alcohols, and imines, which provides readily access to β-amino-α-hydroxyesters in high optical purity.4d

SYNLETT 2010, No. 3, pp 0503–0504
Advanced online publication: 25.01.2010
DOI: 10.1055/s-0029-1219339; Art ID: V31209ST
© Georg Thieme Verlag Stuttgart · New York
(C) Ellman and co-workers have reported the copper-catalyzed addition of bis(pinacolato)diboron to N-tert-butanesulfinyl aldimines with excellent diastereoselectivity for diverse chiral \(\alpha \)-amino boronic acids.\(^{14}\) Furthermore, the N-sulfinyl \(\alpha \)-amino boronate ester addition products can be used as intermediates in the asymmetric synthesis of bortezomib.

(D) Morton and co-workers synthesized chiral aziridines using trimethylsulfonium iodide with good yields and diastereoselectivity for diverse chiral aziridines as diastereomerically and enantiomerically pure compounds in good yields.\(^{15b}\)

(E) Using N-tert-butanesulfinimide as a starting material, Ellman and co-workers have synthesized a novel bis(sulfinyl)imidoamidine (E) using N-tert-butanesulfinamide as starting material. Ellman and co-workers have reported the copper-catalyzed addition of bis(pinacolato)diboron to N-tert-butanesulfinyl imines to achieve trans-\(\alpha \)-amino boronate ester addition products that incorporate the N-sulfinyl urea substituent, which is proven to be an efficient organocatalyst in the enantioselective aza-Henry reaction.

(F) Ellman and co-workers have developed a new class of organocatalysts that incorporate the N-sulfinyl urea substituent, which is acidifying and serves as a chiral controlling element.\(^{11}\) The condensation of tert-butanesulfinimide with the appropriate isocyanate in one step provides urea adducts of tert-butanesulfinyl imines to achieve trans-\(\alpha \)-amino boronate ester addition products that can be used as intermediates in the asymmetric synthesis of bortezomib.

References

