Abstract
The enantiodivergent formal syntheses of both enantiomers
of aspercyclide C is accomplished. Starting from l -(+)-tartaric acid,
the key protected allylic alcohol, (3R ,4R )-4-(methoxymethoxy)non-1-en-3-ol
is prepared, and is then elaborated into both enantiomers of 3-[(4-methoxybenzyl)oxy]non-1-en-4-ol
via Mitsunobu inversion. Esterification with a known biaryl
acid, followed by ring-closing metathesis and deprotection completes
the syntheses.
Key words
aspercyclide C - total synthesis - tartaric
acid - Mitsunobu inversion - ring-closing metathesis
References
<A NAME="RP03010SS-1">1 </A>
Singh SB.
Jayasuriya H.
Zink DL.
Polishook JD.
Dombrowski AW.
Zweerink H.
Tetrahedron
Lett.
2004,
45:
7605
<A NAME="RP03010SS-2A">2a </A>
Pospsil J.
Müller C.
Fürstner A.
Chem. Eur. J.
2009,
15:
5956
<A NAME="RP03010SS-2B">2b </A>
Fürstner A.
Müller C.
Chem.
Commun.
2005,
5583
<A NAME="RP03010SS-2C">2c </A>
Carr JL.
Offermann DA.
Holdom MD.
Dusart P.
White AJP.
Beavil AJ.
Leatherbarrow RJ.
Lindell SD.
Sutton BJ.
Spivey AC.
Chem. Commun.
2010,
46:
1824
<A NAME="RP03010SS-2D">2d </A>
Ramana CV.
Mondal MA.
Puranik VG.
Gurjar MK.
Tetrahedron
Lett.
2007,
48:
7524
<A NAME="RP03010SS-3A">3a </A>
Prasad KR.
Gandi VR.
Synlett
2009,
2593
<A NAME="RP03010SS-3B">3b </A>
Prasad KR.
Gholap SL.
J.
Org. Chem.
2008,
73:
2
<A NAME="RP03010SS-3C">3c </A>
Prasad KR.
Gholap SL.
J.
Org. Chem.
2008,
73:
2916
<A NAME="RP03010SS-3D">3d </A>
Prasad KR.
Swain B.
Tetrahedron:
Asymmetry
2008,
19:
1134
<A NAME="RP03010SS-3E">3e </A>
Prasad KR.
Gandi V.
Tetrahedron: Asymmetry
2008,
19:
2616
<A NAME="RP03010SS-3F">3f </A>
Prasad KR.
Chandrakumar A.
J.
Org. Chem.
2007,
72:
6312
<A NAME="RP03010SS-3G">3g </A>
Prasad KR.
Dhaware M.
Synthesis
2007,
3697
<A NAME="RP03010SS-3H">3h </A>
Prasad KR.
Gholap SL.
J.
Org. Chem.
2006,
71:
3643
<A NAME="RP03010SS-3I">3i </A>
Prasad KR.
Anbarasan P.
Tetrahedron
Lett.
2006,
47:
1433
<A NAME="RP03010SS-3J">3j </A>
Prasad KR.
Anbarasan P.
Tetrahedron:
Asymmetry
2006,
17:
850
<A NAME="RP03010SS-3K">3k </A>
Prasad KR.
Anbarasan P.
Tetrahedron
2006,
62:
8303
<A NAME="RP03010SS-3L">3l </A>
Prasad KR.
Anbarasan P.
Synlett
2006,
2087
<A NAME="RP03010SS-4">4 </A> For an optimized synthesis of γ-hydroxy
amides from tartaric acid amides, see:
Prasad KR.
Chandrakumar A.
Tetrahedron
2007,
63:
1798
<A NAME="RP03010SS-5A">5a </A>
Nugiel DA.
Jakobs K.
Worley T.
Patel M.
Kaltenbach RF.
Meyer DT.
Jadhav PK.
De Lucca GV.
Smyser TE.
Klabe RM.
Bacheler LT.
Rayner MM.
Seitz SP.
J. Med. Chem.
1996,
39:
2156
<A NAME="RP03010SS-5B">5b </A>
McNulty J.
Grunner V.
Mao J.
Tetrahedron Lett.
2001,
42:
5609
<A NAME="RP03010SS-6">6 </A>
Formation of the other diastereomer
was not detected within the limits of ¹ H NMR
spectroscopy.
<A NAME="RP03010SS-7A">7a </A>
Swallen LC.
Boord CE.
J. Am. Chem. Soc.
1930,
52:
651
For the application of this strategy in the synthesis of allylic
alcohols, see:
<A NAME="RP03010SS-7B">7b </A>
Schneider C.
Kazmaier U.
Synthesis
1998,
1314
<A NAME="RP03010SS-7C">7c </A>
Rama Rao AV.
Reddy ER.
Joshi BV.
Yadav JS.
Tetrahedron
Lett.
1987,
28:
6497
<A NAME="RP03010SS-8">8 </A>
Ghosh AK.
Wang Y.
Kim JT.
J.
Org. Chem.
2001,
66:
8973
<A NAME="RP03010SS-9">9 </A>
Mitsunobu O.
Synthesis
1981,
1
<A NAME="RP03010SS-10">10 </A>
Biaryl acid 5 was
prepared according to the method of Ramana et al., see ref. 2d.