Synthesis 2010(11): 1793-1803  
DOI: 10.1055/s-0029-1218731
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Regioselective Synthesis of Highly Functionalized 3-Spiropyrrolidine/pyrrolizidine Oxindoles and Acenaphthenones via One-Pot Four-Component [3+2] Cycloaddition

Kai Zhao, Song-Lei Zhu, Da-Qing Shi, Xiao-Ping Xu*, Shun-Jun Ji*
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. of China
Fax: +86(512)65880307; e-Mail: chemjsj@suda.edu.cn;
Further Information

Publication History

Received 13 January 2010
Publication Date:
12 April 2010 (online)

Abstract

A facile and efficient entry into highly functionalized 3-spiropyrrolidine oxindoles and 3-spiropyrrolizidine oxindoles, as well as to 3-spiropyrrolidine acenaphthenones via one-pot four-component reactions of 3-cyanoacetylindoles, aldehydes, isatin/acenaphthylene-1,2-dione and amino acid has been developed. Particularly valuable features of this method include high yields of products, broad substrate scope and a straightforward procedure.

    References

  • 1a Nair V. Rajesh C. Vinod AU. Bindu S. Sreekanth AR. Mathen JS. Balagopal L. Acc. Chem. Res.  2003,  36:  899 
  • 1b Armstrong RW. Combs AP. Tempest PA. Brown SD. Keating TA. Acc. Chem. Res.  1996,  29:  123 
  • 1c Tietze LF. Modi A. Med. Res. Rev.  2000,  20:  304 
  • 1d Domling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 1e Weber L. Curr. Med. Chem.  2002,  9:  2085 
  • 2a Orru RVA. de Greef M. Synthesis  2003,  1471 
  • 2b Domling A. Chem. Rev.  2006,  106:  17 
  • 2c Feliu L. Vera-Luque P. Albericio F. Álvarez M. J. Comb. Chem.  2007,  9:  521 
  • 2d Karthikeyan K. Perumal PT. Etti S. Shanmugam G. Tetrahedron  2007,  63:  10581 
  • 2e Zhu J. Eur. J. Org. Chem.  2003,  1133 
  • 2f Litvinov YM. Mortikov VY. Shestopalov AM. J. Comb. Chem.  2008,  10:  741 
  • 2g Mohammadi AA. Dabiri M. Qaraat H. Tetrahedron  2009,  65:  3804 
  • 2h Devi I. Kumar BSD. Bhuyan PJ. Tetrahedron Lett.  2003,  44:  8307 
  • 3a da Silva JFM. Garden SJ. Pinto AC. J. Braz. Chem. Soc.  2001,  12:  273 
  • 3b Monlineux RJ. In Alkaloids: Chemical and Biological Perspective   Pelletier SW. Wiley; New York: 1987.  Chap. 1.
  • 3c Fujimora S. inventors; Jap. Pat. Appl.  88-2912.  Chem. Abstr. 1990, 112, 98409
  • 3d Galliford CV. Scheidt KV. Angew. Chem. Int. Ed.  2007,  46:  8748 
  • 3e Shanmugam P. Viswambharan B. Selvakumar K. Madhavan S. Tetrahedron Lett.  2008,  49:  2611 
  • 4a Pajouhesh H. Parsons R. Popp FD. J. Pharm. Sci.  1983,  72:  318 
  • 4b Popp FD. J. Heterocycl. Chem.  1984,  21:  1367 
  • 4c Dandia A. Singh R. Khaturia S. Merienne C. Morgant G. Loupy A. Bioorg. Med. Chem.  2006,  14:  2409 
  • 4d Chene P. Nat. Rev. Cancer  2003,  3:  102 
  • 4e Ding K. Lu Y. Nikolovska-Coleska Z. Qiu S. Ding Y. Gao W. Stuckey J. Krajewski K. Roller PP. Tomita Y. Parrish DA. Deschamps JR. Wang S.
    J. Am. Chem. Soc.  2005,  127:  10130 
  • 5a Marti C. Carreira EM. Eur. J. Org. Chem.  2003,  2209 
  • 5b Toyota M. Ihara M. Nat. Prod. Rep.  1998,  15:  327 
  • 5c Lin H. Danishefsky SJ. Angew. Chem. Int. Ed.  2003,  42:  36 
  • 5d Lo MM.-C. Neumann CS. Nagayama S. Perlstein EO. Schreiber SL. J. Am. Chem. Soc.  2004,  126:  16077 
  • 5e Dounary AB. Hatanaka K. Kodanko JJ. Oestreich M. Pfeifer LA. Weiss MM. J. Am. Chem. Soc.  2003,  125:  6261 ; and references therein
  • 6 Skiles JW. McNeil D. Tetrahedron Lett.  1990,  31:  7277 
  • 7a 1,3-Dipolar Cycloaddition Chemistry   Padwa A. Wiley-Interscience; New York: 1984. 
  • 7b Dondas HA. Fishwick CWG. Grigg R. Kilner C. Tetrahedron  2004,  60:  3473 
  • 7c Boruah M. Konwar D. Sharma SD. Tetrahedron Lett.  2007,  48:  4535 
  • 7d Kawashima K. Kakehi A. Noguchi M. Tetrahedron  2007,  63:  1630 
  • 8a Watson AA. Fleet GWJ. Asano N. Molyneux RJ. Nash RJ. Phytochemistry  2001,  56:  265 
  • 8b O’Hagan D. Nat. Prod. Rep.  1997,  637 
  • 9a Horri S. Fukase H. Matsuo T. Kameda Y. Asano N. Matsui K. J. Med. Chem.  1986,  29:  1038 
  • 9b Spearman MA. Jamieson JC. Wright JA. Exp. Cell Res.  1987,  168:  116 
  • 9c Tsukamoto K. Uno A. Shimada S. Imokaw G. Clin. Res.  1989,  37A:  722 
  • 9d Karpas A. Fleet GWJ. Dwek RA. Petursson S. Mamgoong SK. Ramsden NG. Jacob GS. Rademacher TW. Proc. Natl. Acad. Sci. U.S.A.  1988,  85:  9229 
  • 10a Shanmugam P. Viswambharan B. Madhavan S. Org. Lett.  2007,  9:  4095 
  • 10b Kathiravan S. Raghunathan R. Tetrahedron Lett.  2009,  50:  6116 
  • 10c Shanmugam P. Vaithiyanathan V. Tetrahedron  2008,  64:  3322 
  • 11a Suresh Babu AR. Raghunathan R. Tetrahedron Lett.  2008,  49:  4487 
  • 11b Fokas D. Ryan WJ. Casebier DS. Coffen DL. Tetrahedron Lett.  1998,  39:  2235 
  • 12 . Abdel-Aziz S. Heteroat. Chem.  2002,  13:  324 
  • 13a Sundberg RJ. The Chemistry of Indoles   Academic Press; New York: 1996. 
  • 13b Shanthi G. Perumal PT. Tetrahedron Lett.  2008,  49:  7139 
  • 13c Casapullo A. Bifulco G. Bruno I. Riccio R. J. Nat. Prod.  2000,  63:  447 
  • 13d Bao B. Sun Q. Yao X. Hong J. Lee CO. Sim CJ. Im KS. Jung JH. J. Nat. Prod.  2005,  68:  711 
  • 13e Skibo EB. Xing C. Dorr RT. J. Med. Chem.  2001,  44:  3545 
  • 13f Gupta L. Talwar A. Palne NS. Gupta S. Chauhan PMS. Bioorg. Med. Chem. Lett.  2007,  17:  4075 
  • 13g Kaniwa K. Arai MA. Li X. Ishibashi M. Bioorg. Med. Chem. Lett.  2007,  17:  4254 
  • 14a Sridhar G. Gunasundari T. Raghunathan R. Tetrahedron Lett.  2007,  48:  319 
  • 14b Periyasami G. Raghunathan R. Surendiran G. Mathivanan N. Bioorg. Med. Chem. Lett.  2008,  18:  2342 
  • 14c Kumar RR. Perumal S. Senthilkumar P. Yogeeswari P. Sriram D. Tetrahedron  2008,  64:  2962 
  • 15a Zhu S.-L. Ji S.-J. Zhang Y. Tetrahedron  2007,  49:  1777 
  • 15b Zhu S.-L. Ji S.-J. Zhao K. Zhang Y. Lett. Org. Chem.  2008,  5:  319 
  • 15c Zhu S.-L. Zhao K. Su X.-M. Ji S.-J. Synth. Commun.  2009,  39:  1355 
  • 16a Zhu S.-L. Ji S.-J. Su X.-M. Sun C. Liu Y. Tetrahedron Lett.  2008,  49:  1777 
  • 16b Zhu S.-L. Ji S.-J. Zhao K. Liu Y. Tetrahedron Lett.  2008,  49:  2578 
  • 16c Zhao K. Xu X.-P. Zhu S.-L. Shi D.-Q. Zhang Y. Ji S.-J. Synthesis  2009,  2697 
  • For a detailed discussions on the mechanism of azomethine ylide formation by the decarboxylative route, see:
  • 17a Ardill H. Dorrity MJR. Grigg R. Leon-Ling MS. Malone JF. Sridharan V. Thainpatanagul S. Tetrahedron  1990,  46:  6433 
  • 17b Ardill H. Xavier LR. Grigg R. Montgomery J. Sridharan V. Surendrakumar S. Tetrahedron  1990,  46:  6449 
18

Structural parameters for 5b (CCDC 760960): Data collection: Rigaku Mercury CCD area detector; empirical formula: C56H42Cl2N8O4; colorless solid; crystal dimensions: 0.55 × 0.50 × 0.15 mm; orthorhombic; space group: Pna21; unit cell dimensions: a = 16.2592(11) Å, b = 11.3924(9) Å, c = 25.3133(19) Å; V = 4688.8(6) ų; Mr 961.88; Z = 4; D(calcd) = 1.363 Mg/m³; λ (Mo-Kα) = 0.71075 Å; µ = 0.197 mm; F(000) = 2000, 3.00˚ < θ < 25.49˚, R [I>2 σ ( I)] = 0.0532, wR [I>2 σ ( I)] = 0.1221; largest diff. peak and hole: 0.270 and -0.274 e Å.

19

Structural parameters for 5f (CCDC 760959): Data collection: Rigaku Mercury CCD area detector; empirical formula: C28H22N4O2; colorless solid; crystal dimensions: 0.60 × 0.55 × 0.18 mm; monoclinic; space group P 21/c; unit cell dimensions: a = 25.720 (5) Å, b = 11.1847(18) Å, c = 16.399(3) Å, β = 105.649(5)˚; V = 4542.7(14) ų; Mr = 446.50; Z = 8; D(calcd) = 1.306 Mg/m³; λ (Mo-Kα) = 0.71075 Å; µ = 0.084 mm; F(000) = 1872, 3.05˚ < θ < 25.50˚, R [I>2s ( I)] = 0.0790, wR [I>2s ( I)] = 0.2030; largest diff. peak and hole: 0.397 and -0.269 e Å.