Synlett 2009(19): 3214-3218  
DOI: 10.1055/s-0029-1218300
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Association of Intramolecular Furan Diels-Alder Reaction and N-Acylim­­i­n­ium Alkylation for the Synthesis of Pentacyclic Precursor of Aromathecins

Frédéric Pin, Sébastien Comesse, Adam Daïch*
Laboratoire de Chimie, URCOM, EA 3221, CNRS-INC3M FR3038, UFR des Sciences et Techniques, Université du Havre, BP 540, 25 Rue Philipe Lebon, 76058 Le Havre Cedex, France
Fax: +33(2)32744391; e-Mail: adam.daich@univ-lehavre.fr;
Further Information

Publication History

Received 29 May 2009
Publication Date:
21 October 2009 (online)

Abstract

A new approach for the synthesis of isoindoloquinoline and aromathecin templates is presented. These were obtained in a few steps starting from inexpensive reagents by two different strategies. The key step for both sequences was the IMFDA reaction, leading diastereoselectively to the formation of the unsaturated DE ring system of the expected alkaloid skeletons.

    References and Notes

  • 1 Verma RP. Hansch C. Chem. Rev.  2009,  109:  213 
  • 2a Cinelli MA. Morrell A. Dexheimer TS. Scher ES. Pommier Y. Cushman M. J. Med. Chem.  2008,  51:  4609 
  • 2b Cheng K. Rahier NJ. Eisenhauer BM. Gao R. Thomas SJ. Hecht SM. J. Am. Chem. Soc.  2005,  127:  838 
  • 3 Marchand C. Antony S. Kohn KW. Cushman M. Ioanoviciu A. Staker BL. Burgin AB. Stewart L. Pommier Y. Mol. Cancer Ther.  2006,  5:  287 
  • 4 Lin LZ. Cordell GA. Phytochemistry  1989,  28:  1295 
  • 5 For the first synthesis of rosettacin 1a, see: Walraven HGM. Pandit UK. Tetrahedron  1979,  36:  321 
  • 6a Dai X. Cheng C. Ding C. Yao Q. Zhang A. Synlett  2008,  2989 
  • 6b Pin F. Comesse S. Sanselme M. Daïch A. J. Org. Chem.  2008,  73:  1975 
  • 6c Zhou H.-B. Liu G.-S. Yao Z.-J. J. Org. Chem.  2007,  72:  6270 
  • 7a Cinelli MA. Morrell A. Dexheimer TS. Scher ES. Pommier Y. Cushman M. J. Med. Chem.  2008,  51:  4609 
  • 7b Xiao X. Antony S. Pommier Y. Cushman M. J. Med. Chem.  2006,  49:  1408 
  • 8a Brocksom TJ. Nakamura J. Ferreira TJ. Brocksom U. J. Braz. Chem. Soc.  2001,  12:  597 
  • 8b Vogel P. Cossy J. Plumet J. Arjona O. Tetrahedron  1999,  55:  13521 ; and references cited therein
  • For the IMFDA approaches, see:
  • 9a Boonsombat J. Zhang H. Chughtai MJ. Hartung J. Padwa A. J. Org. Chem.  2008,  73:  3539 
  • 9b Ikoma M. Oikawa M. Sasaki M. Tetrahedron  2008,  64:  2740 
  • 9c Kachkovskyi GO. Kolodiazhnyi OI. Tetrahedron  2007,  63:  12576 
  • 9d Padwa A. Crawford KR. Straub CS. J. Org. Chem.  2006,  71:  5432 ; and references cited therein
  • In this area, see:
  • 10a Varlamov AV. Boltukhina EV. Zubkov FI. Nikitina EV. J. Heterocycl. Chem.  2006,  43:  1479 
  • 10b Namboothiri INN. Ganesh M. Mobin SM. Cojocaru M. J. Org. Chem.  2005,  70:  2235 
  • 10c Zubkov FI. Nikitina EV. Turchin KF. Aleksandrov GG. Safronova AA. Borisov RS. Varlamov AV. J. Org. Chem.  2004,  69:  432 
  • 10d Zubkov FI. Nikitina EV. Turchin KF. Safronova AA. Borisov RS. Varlamov AV. Russ. Chem. Bull., Int. Ed.  2004,  53:  860 
  • 10e Tromp RA. Brussee J. Van Der Gen A. Org. Biomol. Chem.  2003,  1:  3592 
  • 10f Varlamov AV. Nikitina EV. Zubkov FI. Shurupova OV. Chernyshev AI. Mendeleev Commun.  2002,  12:  32 
  • 10g Jacobi PA. Li Y. J. Am. Chem. Soc.  2001,  123:  9307 
  • 10h Padwa A. Brodney MA. Satake K. Straub CS. J. Org. Chem.  1999,  64:  4617 
  • 10i Padwa A. Brodney MA. Liu B. Satake K. Wu T.
    J. Org. Chem.  1999,  64:  3595 
  • 10j Lautens M. Fillion E.
    J. Org. Chem.  1998,  63:  647 
  • 10k Padwa A. Dimitroff M. Waterson AG. Wu T. J. Org. Chem.  1998,  63:  3986 
  • 10l Padwa A. Kappe CO. Cochran JE. Snyder JP. J. Org. Chem.  1997,  62:  2786 
  • 11 Martin SF. Geraci LS. Tetrahedron Lett.  1988,  29:  6725 
  • 12 Ohba M. Kubo H. Natsutani I. Tetrahedron  2007,  63:  12689 ; and references cited therein
  • 13 Pin F. Comesse S. Garrigues B. Marchalín Š. Daïch A. J. Org. Chem.  2007,  72:  1181 
  • 14a Ishihara Y. Kiyota Y. Goto G. Chem. Pharm. Bull.  1990,  38:  3024 
  • 14b Mali RS. Yeola SN. Synthesis  1986,  755 
  • 16 Anzini M. Cappelli A. Vomero S. Giorgi G. Langer T. Bruni G. Romeo MR. Basile AS. J. Med. Chem.  1996,  39:  4275 
  • 17 Roma G. di Braccio M. Balbi A. Mazzei M. Ermili A. J. Heterocycl. Chem.  1987,  24:  329 
  • 19 See, for example: Mentink G. Van Maarseveen JH. Hiemstra H. Org. Lett.  2002,  4:  3497 
15

Data for 2A
Mp 123 ˚C (white solid); R f = 0.27 (cyclohexane-EtOAc = 1:1). IR: ν = 1729 (C=O), 1684 (C=O), 1645 (C=C), 1444 (CH), 1426 (CH), 1290 (CO) cm. ¹H NMR (200 MHz, CDCl3): δ = 1.12-1.24 (m, 1 H, H6 α), 1.20 (t, 3 H, CH3CH2, J = 7.0 Hz), 2.37-2.47 (m, 1 H, H7), 2.63-2.75 (m, 1 H, H6 β), 2.68-2.75 (m, 1 H, H8), 3.70 (d, 1 H, H4 α, J = 15.6 Hz), 4.10 (q, 2 H, CH3CH2, J = 7.0 Hz), 4.41 (dd, 1 H, H5, J = 12.5, 3.1 Hz), 4.90 (d, 1 H, H4 β, J = 15.6 Hz), 5.10 (dd, 1 H, H1, J = 4.7, 1.6 Hz), 6.28 (d, 1 H, H3, J = 5.5 Hz), 6.42 (dd, 1 H, H2, J = 5.5, 1.6 Hz), 7.38-7.55 (m, 3 H, Har), 7.83 (d, 1 H, Har, J = 7.0 Hz). ¹³C NMR (50 MHz, CDCl3): δ = 14.4 (CH3), 36.6 (C6), 39.6 (C7), 41.1 (C4), 53.7 (C8), 57.5 (C5), 61.1 (CH2 ester), 80.1 (C1), 85.7 (Cq), 122.0 (CHar), 124.2 (CHar), 128.6 (CHar), 131.6 (CHar), 132.5 (Cq), 136.7 (C3), 137.7 (C2), 145.2 (Cq), 166.7 (C=O), 171.5 (C=O). Anal. Calcd for C19H19NO4 (325.13): C, 70.14; H, 5.89; N, 4.31. Found: C, 69.98; H, 5.66; N, 4.21.

18

Only traces of product 24 were detected by ¹H NMR.

20

Data for 3A
Mp 159 ˚C (white solid); R f = 0.23 (cyclohexane-EtOAc = 2:3). IR: ν = 2903 (CH), 1731 (C=O), 1692 (C=O), 1636 (C=N), 1508 (C=C) cm. ¹H NMR (200 MHz, CDCl3): δ = 1.21-1.31 (m, 1 H, H11 α), 1.24 (t, 3 H, CH3CH2, J = 7.0 Hz), 2.42-2.53 (m, 1 H, H12), 2.77 (dd, 1 H, H13, J = 4.7, 3.9 Hz), 2.96-3.08 (m, 1 H, H11 β), 3.77 (d, 1 H, H4 α, J = 14.9 Hz), 4.10 (q, 2 H, CH3CH2, J = 7.0 Hz), 4.60 (dd, 1 H, H5, J = 12.1, 2.7 Hz), 5.02 (d, 1 H, H4 β, J = 14.9 Hz), 5.13 (dd, 1 H, H1, J = 3.9, 1.6 Hz), 6.30 (d, 1 H, H3, J = 6.3 Hz), 6.47 (dd, 1 H, H2, J = 6.3, 1.6 Hz), 7.62 (dd, 1 H, H8, J = 7.8, 7.0 Hz), 7.78-7.86 (m, 1 H, H7), 7.98 (d, 1 H, H9, J = 7.8 Hz), 8.14 (d, 1 H, H6, J = 8.6 Hz), 8.62 (s, 1 H, H10). ¹³C NMR (50 MHz, CDCl3): δ 14.4 (CH3), 35.3 (C11), 39.6 (C12), 41.2 (C4), 53.7 (C13), 58.9 (C5), 61.1 (CH2 ester), 80.2 (C1), 85.5 (Cq), 123,8 (Cq), 127.3 (C8), 127.9 (Cq), 129.4 (C6), 129.8 (C9), 131.7 (C7), 133.2 (C10), 137.1 (C3), 137.4 (C2), 149.8 (Cq), 163.2 (C=N), 164.9 (C=O), 171.3 (C=O). Anal. Calcd for C22H20N2O4 (376.41): C, 70.20; H, 5.36; N, 7.44. Found: C, 70.05; H, 5.16; N, 7.28.