Synlett 2009(12): 1887-1904  
DOI: 10.1055/s-0029-1217513
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Dimerization and Self-Sorting of Tetraurea Calix[4]arenes

Valentyn Rudzevich, Yuliya Rudzevich, Volker Böhmer*
Abteilung Lehramt Chemie, Fachbereich Chemie, Pharmazie und Geowissenschaften, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55099, Mainz, Germany
Fax: +49(6131)3925419; e-Mail: vboehmer@mail.uni-mainz.de;
Further Information

Publication History

Received 14 January 2009
Publication Date:
23 June 2009 (online)

Abstract

Calix[4]arenes, substituted at their wide rim by four urea functions, form hydrogen-bonded dimeric capsules. Covalent connection of adjacent urea functions within a calixarene molecule creates compounds with one to four loops. They show selective dimerization, since an overlap of loops is not possible within a dimer, and the urea substituent of the partner must be able to penetrate the loop. These selectivities can be developed into a sorting scheme for eleven tetraureas, where only six of potentially 35 dimeric combinations are realized. Together with the similar dimerization of triureas derived from triphenylmethane and the formation of tetramers from triurea monoacetamide calix[4]arenes, it is possible to design building blocks that form dendritic assemblies uniform in size and structure.

1 Introduction

1.1 Self-Assembly: General Points

1.2 Dimerization of Tetraureas Derived from Calix[4]arenes

1.3 Properties

1.3.1 Stability

1.3.2 Guest Exchange

1.3.3 Symmetry

2 Synthesis of Tetraurea Calix[4]arenes

2.1 General Pathways and Compounds with Identical Urea Groups

2.2 Selective Syntheses

2.2.1 Protective Groups

2.2.2 Stepwise Syntheses

2.3 Tetraurea Derivatives with Loops

2.3.1 Conventional Synthesis

2.3.2 Olefin Metathesis and Template Syntheses

3 Selective Dimerization

3.1 Early Examples

3.2 The Use of Loops and Bulky Groups

3.2.1 Urea Groups Connected by Loops

3.2.2 Urea Groups with Bulky Substituents

3.2.3 Bulky Substituents in Combination with Loops

3.3 Proofs for Selectivity

4 Self-Sorting

4.1 General Rules

4.2 A Sorting Scheme for Programmed Self-Assembly

4.3 Experimental Proofs

4.3.1 NMR Spectroscopy

4.3.2 Mass Spectrometry

5 Self-Assembly to Dendrimers

5.1 General Idea

5.2 Additional Assemblies

5.2.1 Dimers of Triurea Triphenylmethanes

5.2.2 Tetramers of Triurea Monoacetamides

5.3 Examples of Dendritic Assemblies

6 Outlook

    References

  • 1 Cram DJ. Choi HJ. Bryant JA. Knobler CB. J. Am. Chem. Soc.  1992,  114:  7748 
  • 2 Ko YH. Kim E. Hwang I. Kim K. Chem. Commun.  2007,  1305 
  • 3a Philp D. Stoddart JF. Angew. Chem. Int. Ed. Engl.  1996,  35:  1154 ; Angew. Chem. 1996, 108, 1242
  • 3b Conn MM. Rebek J. Chem. Rev.  1997,  97:  1647 
  • 3c Prins LJ. Reinhoudt DN. Timmerman P. Angew. Chem. Int. Ed.  2001,  40:  2382 ; Angew. Chem. 2001, 113, 2446
  • 4a Hwang S.-H. Shreiner CD. Moorefield CN. Newkome GR. New J. Chem.  2007,  31:  1192 
  • 4b Dalgarno SJ. Power NP. Atwood JL. Coord. Chem. Rev.  2008,  252:  825 
  • 5a Lankshear MD. Beer PD. Acc. Chem. Res.  2007,  40:  657 
  • 5b Sada K. Tani T. Shinkai S. Synlett  2006,  2364 
  • 6a Lehn J.-M. Angew. Chem. Int. Ed. Engl.  1988,  27:  89 ; Angew. Chem. 1988, 100, 91
  • 6b Lehn J.-M. Angew. Chem. Int. Ed. Engl.  1990,  29:  1304 ; Angew. Chem. 1990, 102, 1347
  • 7 See: Pelesko JA. Self-Assembly: The Science of Things That Put Themselves Together   Chapman & Hall/CRC Press; New York: 2007. 
  • 8 Wyler R. de Mendoza J. Rebek J. Angew. Chem. Int. Ed. Engl.  1993,  32:  1699 ; Angew. Chem. 1993, 105, 1820
  • For reviews on calixarenes, see:
  • 9a Calixarenes 2001   Asfari Z. Böhmer V. Harrowfield J. Vicens J. Kluwer Academic; Dordrecht: 2001. 
  • 9b Calixarenes in the Nanoworld   Vicens J. Harrowfield J. Springer; Dordrecht: 2007. 
  • 11 For a review on hydrogen-bonded dimers, see: Rebek J. Angew. Chem. Int. Ed.  2005,  44:  2068 ; Angew. Chem. 2005, 117, 2104
  • For reviews dealing with dimers formed by tetraurea calix[4]arenes, see:
  • 12a Rebek J. Chem. Commun.  2000,  637 
  • 12b Böhmer V. Vysotsky MO. Aust. J. Chem.  2001,  54:  671 
  • 12c Hof F. Craig SL. Nuckolls C. Rebek J. Angew. Chem. Int. Ed.  2002,  41:  1488 ; Angew. Chem. 2002, 114, 1556
  • 13 Mogck O. Paulus EF. Böhmer V. Thondorf I. Vogt W. Chem. Commun.  1996,  2533 
  • 14a Heinz T. Rudkevich DM. Rebek J. Nature  1998,  394:  764 
  • 14b Heinz T. Rudkevich DM. Rebek J. Angew. Chem. Int. Ed.  1999,  38:  1136 ; Angew. Chem. 1999, 111, 1206
  • 15a MacGillivray LR. Atwood JL. Nature  1997,  389:  469 
  • 15b Gerkensmeier T. Iwanek W. Agena C. Fröhlich R. Kotila S. Näther C. Mattay J. Eur. J. Org. Chem.  1999,  2257 
  • 15c Shivanyuk A. Rebek J. Proc. Natl. Acad. Sci. U. S. A.  2001,  98:  7662 
  • 16 Atwood JL. Barbour LJ. Jerga A. Chem. Commun.  2001,  2376 
  • 17 Mogck O. Böhmer V. Vogt W. Tetrahedron  1996,  52:  8489 
  • 18 Castellano RK. Craig SL. Nuckolls C. Rebek J. J. Am. Chem. Soc.  2000,  122:  7876 
  • 19 Mogck O. Pons V. Böhmer V. Vogt W. J. Am. Chem. Soc.  1997,  119:  5706 
  • 20 Vysotsky MO. Böhmer V. Org. Lett.  2000,  2:  3571 
  • 21 Vysotsky MO. Thondorf I. Böhmer V. Angew. Chem. Int. Ed.  2000,  39:  1264 ; Angew. Chem. 2000, 112, 1309
  • 22 Vatsouro I. Alt E. Vysotsky M. Böhmer V. Org. Biomol. Chem.  2008,  6:  998 
  • 23 Castellano RK. Nuckolls C. Rebek J. J. Am. Chem. Soc.  1999,  121:  11156 
  • 25 Pop A. Vysotsky MO. Saadioui M. Böhmer V. Chem. Commun.  2003,  1124 
  • 26 See, for instance: Jakobi RA. Böhmer V. Grüttner C. Kraft D. Vogt W. New J. Chem.  1996,  20:  493 
  • 27 Shimizu KD. Rebek J. Proc. Natl. Acad. Sci. U. S. A.  1995,  92:  12403 
  • 28 Van Wageningen AMA. Snip E. Verboom W. Reinhoudt DN. Boerrigter H. Liebigs Ann.  1997,  2235 
  • 29a Vysotsky MO. Bolte M. Thondorf I. Böhmer V. Chem. Eur. J.  2003,  9:  3375 
  • 29b Xu S. Podoprygorina G. Böhmer V. Ding Z. Rooney P. Rangan C. Mittler S. Org. Biomol. Chem.  2007,  5:  558 
  • 30a Bogdan A. Vysotsky MO. Böhmer V. Collect. Czech. Chem. Commun.  2004,  69:  1009 
  • 30b Van Wageningen AMA. Timmerman P. van Duynhoven JPM. Verboom W. van Veggel FCJM. Reinhoudt DN. Chem. Eur. J.  1997,  3:  639 
  • 31 Saadioui M. Shivanyuk A. Böhmer V. Vogt W. J. Org. Chem.  1999,  64:  3774 
  • 32 Scheerder J. Vreekamp RH. Engbersen JFJ. Verboom W. van Duynhoven JPM. Reinhoudt DN. J. Org. Chem.  1996,  61:  3476 
  • 33 Rudzevich Y. Rudzevich V. Schollmeyer D. Böhmer V. Org. Lett.  2007,  9:  957 
  • 35 Rudzevich Y. Cao Y. Rudzevich V. Böhmer V. Chem. Eur. J.  2008,  14:  3346 
  • 36 See, for instance: Bogdan A. Bolte M. Böhmer V.
    Chem. Eur. J.  2008,  14:  8514 
  • 37 Bogdan A. Vysotsky MO. Ikai T. Okamoto Y. Böhmer V. Chem. Eur. J.  2004,  10:  3324 
  • For example, see:
  • 38a Chase PA. Lutz M. Spek AL. van Klink GPM. van Koten G. J. Mol. Catal. A: Chem.  2006,  254:  2 
  • 38b Song KH. Kang SO. Ko J. Chem. Eur. J.  2007,  13:  5129 
  • 38c Claeys DD. Stevens CV. Dieltiens N. Eur. J. Org. Chem.  2008,  171 
  • 39 Vysotsky MO. Bogdan A. Wang L. Böhmer V.
    Chem. Commun.  2004,  1268 
  • 40 Bogdan AE. Ph.D. Thesis   Johannes Gutenberg-Universität; Mainz: 2004. 
  • 41 Molokanova O. Bogdan A. Vysotsky MO. Bolte M. Ikai T. Okamoto Y. Böhmer V. Chem. Eur. J.  2007,  13:  6157 
  • 42 Molokanova O. Podoprygorina G. Böhmer V. Tetrahedron  2009,  doi:  10.1016/j.tet.2008.10.099 
  • 43 Cao Y. Wang L. Bolte M. Vysotsky MO. Böhmer V. Chem. Commun.  2005,  3132 
  • 44 Podoprygorina G. Böhmer V. In Modern Supramolecular Chemistry   Diederich F. Stang PJ. Tykwinski RR. Wiley-VCH; Weinheim: 2008.  p.143-184  
  • 45 Molokanova O. Vysotsky MO. Cao Y. Thondorf I. Böhmer V. Angew. Chem. Int. Ed.  2006,  45:  8051 ; Angew. Chem. 2006, 118, 8220
  • 47 Castellano RK. Kim BH. Rebek J. J. Am. Chem. Soc.  1997,  119:  12671 
  • 48 Castellano RK. Rebek J. J. Am. Chem. Soc.  1998,  120:  3657 
  • 49 Thondorf I. Rudzevich Y. Rudzevich V. Böhmer V. Org. Biomol. Chem.  2007,  5:  2775 
  • 50 Li G.-K. Yang Y. Chen C.-F. Huang Z.-T. Tetrahedron Lett.  2007,  48:  6096 
  • 51 Bolte M. Thondorf I. Böhmer V. Rudzevich V. Rudzevich Y. CrystEngComm  2008,  10:  270 
  • 52 Vysotsky MO. Mogck O. Rudzevich Y. Shivanyuk A. Böhmer V. Brody MS. Cho YL. Rudkevich DM. Rebek J. J. Org. Chem.  2004,  69:  6115 
  • 54 Vysotsky MO. Thondorf I. Böhmer V. Chem. Commun.  2001,  1890 
  • 56 Schalley CA. Castellano RK. Brody MS. Rudkevich DM. Siuzdak G. Rebek J. J. Am. Chem. Soc.  1999,  121:  4568 
  • 57 Vysotsky MO. Pop A. Broda F. Thondorf I. Böhmer V. Chem. Eur. J.  2001,  7:  4403 
  • 58 Frish L. Vysotsky MO. Matthews SE. Böhmer V. Cohen Y. J. Chem. Soc., Perkin Trans. 2  2002,  83 
  • 59 Frish L. Vysotsky MO. Böhmer V. Cohen Y. Org. Biomol. Chem.  2003,  9:  3375 
  • 60 Braekers D. Peters C. Bogdan A. Rudzevich Y. Böhmer V. Desreux JF. J. Org. Chem.  2008,  73:  701 
  • 61 Jiang W. Winkler HDF. Schalley CA. J. Am. Chem. Soc.  2008,  130:  13852 
  • 68 For pentacalix[4]arenes obtained by the attachment of four tetraurea calix[4]arenes to the narrow rim of a fifth calix[4]arene in the 1,3-alternate conformation, see: Rudzevich Y. Fischer K. Schmidt M. Böhmer V. Org. Biomol. Chem.  2005,  3:  3916 
  • 69 Dinger MB. Scott MJ. Eur. J. Org. Chem.  2000,  2467 
  • 70a Rudzevich Y. Rudzevich V. Schollmeyer D. Thondorf I. Böhmer V. Org. Lett.  2005,  7:  613 
  • 70b Rudzevich V. Schollmeyer D. Braekers D. Desreux JF. Diss R. Wipff G. Böhmer V. J. Org. Chem.  2005,  70:  6027 
  • 72 Rudzevich Y. Rudzevich V. Schollmeyer D. Thondorf I. Böhmer V. Org. Biomol. Chem.  2006,  4:  3938 
  • 73 Shivanyuk A. Saadioui M. Broda F. Thondorf I. Vysotsky MO. Rissanen K. Kolehmainen E. Böhmer V. Chem. Eur. J.  2004,  10:  2138 
  • 76 Rudzevich Y. Rudzevich V. Moon C. Schnell I. Fischer K. Böhmer V. J. Am. Chem. Soc.  2005,  127:  14168 
  • 77 Rudzevich Y. Rudzevich V. Bolte M. Böhmer V. Synthesis  2008,  754 
  • 78 Rudzevich Y. Rudzevich V. Moon C. Brunklaus G. Böhmer V. Org. Biomol. Chem.  2008,  6:  2270 
10

Analogous dimers are formed by methyl ethers, although they are not fixed in the cone conformation (see ref. 46).

24

By A, B, and C, different types of phenolic units are indicated.

34

It should be noted that the 1,2-substitution is also statistically favored by a factor of two over the 1,3-substitution.

46

In the case of tetramethyl ethers, which usually prefer the partial cone conformation, the calix[4]arenes are also prearranged into the cone conformation.

53

Strictly spoken, this is true for the loops studied so far in which the meta positions of the adjacent phenylureas are connected by an α,ω-oxyalkane chain with up to 20 CH2 groups. For other loops, the situation may be qualitatively different.

55

Bolte, M.; Vysotsky, M. O.; Böhmer, V. unpublished results

62

Regioisomeric dimers and enantiomers are not distinguished.

63

For the bis-loop derivative I, a similar compound with a bulky residue is possible, and for the mono-loop derivative G, two additional compounds with slim residues are possible. However, this would not enlarge the sorting possibilities.

64

From n objects, the first can form n different dimers, including its homodimer. The second one can form n - 1 dimers additionally, the dimer with the first object already being counted. The third one can form n - 2, and so on, and for the last one only its homodimer remains as a possibility. Thus, the number of dimers is given by: S = n + (n - 1) +
(n - 2) + ... + 2 + 1. When the first and the last term are added, as well as the second and the penultimate, and so on, this can be rearranged to: S = [n + 1] + [(n - 1) + 2] + [(n - 2) + 3] + ... = 0.5˙n˙(n + 1).

65

It is not even necessary that all eleven tetraureas are present in the same quantity; only the pairs K/A, J/B, I/C, H/D, and G/E must be present in stoichiometric amounts.

66

For compounds where Y = C5H11, the slim residue is tolyl and the bulky residue is 3,5-bis(4-tert-butylphenyl)-4-propoxyphenyl. The loops were formed by -O(CH2)10O- chains connecting adjacent phenyl groups

67

Rudzevich Y., Rudzevich V., Klautsch F., Schalley C. A., Böhmer V. Angew. Chem. Int. Ed. 2009, 48, 3867; Angew. Chem. 2009, 121, 3925.

71

In principle, the synthetic sequence allows also the introduction of two different alkyl ether residues Y if the respective ethers of the benzaldehyde 30 or phenol 31 are used.

74

In polar solvents, the NMR spectra reveal the expected (time-averaged) C S symmetry.

75

From two regioisomeric dimers, only the distal arrangement is formed.