Thorac Cardiovasc Surg 2009; 57(7): 379-385
DOI: 10.1055/s-0029-1185873
Original Cardiovascular

© Georg Thieme Verlag KG Stuttgart · New York

Regulation of Endothelial Nitric Oxide Synthase (eNOS) in Myocardium Subjected to Cardioplegic Arrest

U. M. Fischer1 , O. Klass2 , C. S. Cox1 , U. Stock3 , A. Antonyan3 , K. Brixius4 , J. H. Fischer3 , U. Mehlhorn5 , W. Bloch4
  • 1Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas, United States
  • 2Radiology, University of Ulm, Ulm, Germany
  • 3Experimental Medicine, University of Cologne, Cologne, Germany
  • 4Molecular and Cellular Sport Medicine, German Sport University, Cologne, Germany
  • 5Thoracic and Cardiovascular Surgery, University of Mainz, Mainz, Germany
Further Information

Publication History

received February 20, 2008

Publication Date:
30 September 2009 (online)

Abstract

Background: Nitric oxide (NO) production by both coronary endothelial cells and cardiomyocytes is thought to play a significant role in myocardial pathophysiology following ischemia/reperfusion (I/R). Methods: In thirteen pigs subjected to 1 hour cardioplegic arrest (CA) on CPB, left ventricular (LV) biopsies were collected prior to CPB (baseline), at 60 min CPA, at 15 and 30 min reperfusion on CPB, and at 120 min post CPB. LV specimens were immunocytochemically stained against phospho-eNOSSer1177, phospho-eNOSThr495, phosphorylated ERK1/2, and AKT/PKB. Four additional pigs without CA served as controls. Cardiomyocytes were quantitatively investigated using TV densitometry (gray units: U). Results: After 60 min CA phosphorylation of eNOSSer1177 increased significantly and remained elevated until 30 min of reperfusion. In contrast, eNOSThr495 phosphorylation remained unchanged during CA and throughout reperfusion. In control animals, eNOS phosphorylation remained unchanged. Akt/PKB activity significantly increased after 60 min CA and decreased thereafter. ERK1/2 activity remained unchanged during ischemia but increased during reperfusion. Conclusions: ENOS activation during ischemia occurs through phosphorylation at Ser1177 mediated by Akt/PKB. ERK1/2 does not seem to be involved in myocardial eNOS regulation especially not via phosphorylation at eNOSThr495.

References

  • 1 Vinten-Johansen J, Nakanishi K. Postcardioplegia acute cardiac dysfunction and reperfusion injury.  J Cardiothorac Vasc Anesth. 1993;  7 (4 Suppl. 2) 6-18
  • 2 Nonami Y. The role of nitric oxide in cardiac surgery.  Surg Today. 1997;  27 (7) 583-592
  • 3 Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury.  Cardiovasc Res. 2004;  61 (3) 402-413
  • 4 Mayers I, Salas E, Hurst T, Johnson D, Radomski M W. Increased nitric oxide synthase activity after canine cardiopulmonary bypass is suppressed by s-nitrosoglutathione.  J Thorac Cardiovasc Surg. 1999;  117 (5) 1009-1016
  • 5 Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research.  J Mol Cell Cardiol. 2001;  33 (11) 1897-1918
  • 6 Moncada S, Palmer R M, Higgs E A. Nitric oxide: physiology, pathophysiology, and pharmacology.  Pharmacol Rev. 1991;  43 (2) 109-142
  • 7 de Belder A J, Radomski M W, Why H J, Richardson P J, Bucknall C A, Salas E, Martin J F, Moncada S. Nitric oxide synthase activities in human myocardium.  Lancet. 1993;  341 (8837) 84-85
  • 8 Hattler B G, Oddis C V, Zeevi A, Luss H, Shah N, Geller D A, Billiar T R, Simmons R L, Finkel M S. Regulation of constitutive nitric oxide synthase activity by the human heart.  Am J Cardiol. 1995;  76 (12) 957-959
  • 9 Mungrue I N, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart D J, Husain M. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death.  J Clin Invest. 2002;  109 (6) 735-743
  • 10 Aravamudan B, Volonte D, Ramani R, Gursoy E, Lisanti M P, London B, Galbiati F. Transgenic overexpression of caveolin-3 in the heart induces a cardiomyopathic phenotype.  Hum Mol Genet. 2003;  12 (21) 2777-2788
  • 11 Michel T, Feron O. Nitric oxide synthases: which, where, how, and why?.  J Clin Invest. 1997;  100 (9) 2146-2152
  • 12 Wu K K. Regulation of endothelial nitric oxide synthase activity and gene expression.  Ann NY Acad Sci. 2002;  962 122-130
  • 13 Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher A M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation.  Nature. 1999;  399 (6736) 601-605
  • 14 Bauer P M, Fulton D, Boo Y C, Sorescu G P, Kemp B E, Jo H, Sessa W C. Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric-oxide synthase.  J Biol Chem. 2003;  278 (17) 14841-14849
  • 15 Fleming I, Fisslthaler B, Dimmeler S, Kemp B E, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity.  Circ Res. 2001;  88 (11) E68-E75
  • 16 Bloch W, Addicks K, Hescheler J, Fleischmann B K. Nitric oxide synthase expression and function in embryonic and adult cardiomyocytes.  Microsc Res Tech. 2001;  55 (4) 259-269
  • 17 Massion P B, Pelat M, Belge C, Balligand J L. Regulation of the mammalian heart function by nitric oxide.  Comp Biochem Physiol A Mol Integr Physiol. 2005;  142 (2) 144-150
  • 18 Zhao X, He G, Chen Y R, Pandian R P, Kuppusamy P, Zweier J L. Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport.  Circulation. 2005;  111 (22) 2966-2972
  • 19 Boyd C S, Cadenas E. Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis.  Biol Chem. 2002;  383 (3–4) 411-423
  • 20 Brunner F, Maier R, Andrew P, Wolkart G, Zechner R, Mayer B. Attenuation of myocardial ischemia/reperfusion injury in mice with myocyte-specific overexpression of endothelial nitric oxide synthase.  Cardiovasc Res. 2003;  57 (1) 55-62
  • 21 Omura T, Yoshiyama M, Shimada T, Shimizu N, Kim S, Iwao H, Takeuchi K, Yoshikawa J. Activation of mitogen-activated protein kinases in in vivo ischemia/reperfused myocardium in rats.  J Mol Cell Cardiol. 1999;  31 (6) 1269-1279
  • 22 Yellon D M, Baxter G F. Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury?.  Trends Cardiovasc Med. 1999;  9 (8) 245-249
  • 23 Matsui T, Tao J, del Monte F, Lee K H, Li L, Picard M, Force T L, Franke T F, Hajjar R J, Rosenzweig A. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo.  Circulation. 2001;  104 (3) 330-335
  • 24 Shiojima I, Yefremashvili M, Luo Z, Kureishi Y, Takahashi A, Tao J, Rosenzweig A, Kahn C R, Abel E D, Walsh K. Akt signaling mediates postnatal heart growth in response to insulin and nutritional status.  J Biol Chem. 2002;  277 (40) 37670-37677
  • 25 Chen Z, Gibson T B, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb M H. MAP kinases.  Chem Rev. 2001;  101 (8) 2449-2476
  • 26 Hausenloy D J, Tsang A, Mocanu M M, Yellon D M. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion.  Am J Physiol Heart Circ Physiol. 2005;  288 (2) H971-H976

MD Wilhelm Bloch

Department of Molecular and Cellular Sport Medicine
Institute of Cardiovascular Research
German Sport University Cologne

Carl-Diem-Weg 6

50933 Cologne

Germany

Phone: + 49 2 21 49 82 53 90

Fax: + 49 2 21 49 82 83 70

Email: W.Bloch@dshs-koeln.de

    >