Herbal Medicines in the Management of Urolithiasis: Alternative or Complementary?

Veronika Butterweck¹, Saeed R. Khan²

¹ College of Pharmacy, Department of Pharmaceutics, University of Florida, Gainesville, Florida, USA
² College of Medicine, Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, Florida, USA

Abstract

Kidney stone formation or urolithiasis is a complex process that results from a succession of several physicochemical events including supersaturation, nucleation, growth, aggregation, and retention within the kidneys. Epidemiological data have shown that calcium oxalate is the predominant mineral in a majority of kidney stones. Among the treatments used are extracorporeal shock wave lithotripsy (ESWL) and drug treatment. Even improved and besides the high cost that imposes, compelling data now suggest that exposure to shock waves in therapeutic doses may cause acute renal injury, decrease in renal function and an increase in stone recurrence. In addition, persistent residual stone fragments and the possibility of infection after ESWL represent a serious problem in the treatment of stones. Furthermore, in spite of substantial progress in the study of the biological and physical manifestations of kidney stones, there is no satisfactory drug to use in clinical therapy. Data from in vitro, in vivo and clinical trials reveal that phytotherapeutic agents could be useful as either an alternative or an adjunctive therapy in the management of urolithiasis. The present review therefore critically evaluates the potential usefulness of herbal medicines in the management of urolithiasis.

Abbreviations

CaOx: calcium oxalate
CaP: calcium phosphate
EG: ethylene glycol
ESWL: extracorporeal shock wave lithotripsy
Ox: oxalate
URS: ureteroscopy

Introduction

Urinary stones affect 10–12% of the population in industrialized countries [1,2]. There are only a few geographical areas in which stone disease is rare, e.g., in Greenland and in the coastal areas of Japan [2]. The incidence of urinary stones has been increasing over the last years while the age of onset is decreasing [3]. With a prevalence of > 10% and an expected recurrence rate of ~50%, stone disease has an important effect on the healthcare system [4]. Once recurrent, the subsequent relapse risk is raised and the interval between recurrences is shortened [1]. Features associated with recurrence include a young age of onset, positive family history, infection stones and underlying medical conditions [1]. Epidemiological studies revealed that nephrolithiasis is more common in men (12%) than in women (6%) and is more prevalent between the ages of 20 to 40 in both sexes [5]. The etiology of this disorder is multifactorial and is strongly related to dietary lifestyle habits or practices [6]. Increased rates of hypertension and obesity, which are linked to nephrolithiasis, also contribute to an increase in stone formation [7].

Management of stone disease depends on the size and location of the stones (see below). Stones larger than 5 mm or stones that fail to pass through should be treated by some interventional procedures such as extracorporeal shock wave lithotripsy (ESWL), ureteroscopy (URS), or percutaneous nephrolithotomy (PNL) [8]. Unfortunately, the propensity for stone recurrence is not altered by removal of stones with ESWL and stone recurrence is still about 50% [9]. In addition, ESWL might show some significant side effects such as renal damage, ESWL induced hypertension or renal impairment [10].

Bibliography

Published online May 14, 2009

Correspondence

Dr. Veronika Butterweck
Department of Pharmaceutics, College of Pharmacy, University of Florida P.O. Box 100494
Gainesville, FL 32610 USA
Phone: +1 352 273 7859
Fax: +1 352 273 7854
butterwk@cop.ufl.edu
Table 1

<table>
<thead>
<tr>
<th>Condition</th>
<th>Definition</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercalciuria</td>
<td>urinary calcium excretion > 200 mg/d</td>
<td>absorptive hypercalciuria: GI calcium absorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>renal hypercalciuria: impaired renal Ca absorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>resorptive hypercalciuria: primary hyperparathyroidism</td>
</tr>
<tr>
<td>Hyperoxaluria</td>
<td>urinary oxalate excretion > 40 mg/d</td>
<td>primary hyperoxaluria: genetic Ox overproduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dietary hyperoxaluria: excessive dietary intake</td>
</tr>
<tr>
<td></td>
<td></td>
<td>enteric hyperoxaluria: GI oxalate absorption</td>
</tr>
<tr>
<td>Hypocitraturia</td>
<td>urinary citrate excretion < 320 mg/d</td>
<td>distal renal tubular acidosis: impaired renal tubular acid excretion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chronic diarrheal syndrome: GI alkali loss</td>
</tr>
<tr>
<td></td>
<td></td>
<td>thiazide-induced: hypokalemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>idiopathic hypocitraturia: high animal protein diet, excessive physical exercise, high sodium intake</td>
</tr>
<tr>
<td>Hyperuricosuria</td>
<td>urinary acid excretion > 600 mg/d</td>
<td>dietary purine excess, uric acid overproduction or over-excretion</td>
</tr>
<tr>
<td>Hypomagnesuria</td>
<td>urinary magnesium excretion < 50 mg/d</td>
<td>limited intake of magnesium-rich foods</td>
</tr>
<tr>
<td>Gouty diathesis</td>
<td>urinary pH < 5.5</td>
<td>etiology unknown</td>
</tr>
</tbody>
</table>

Abbreviations: GI = gastrointestinal; Ca = calcium, Ox = oxalate; ↑ = increased

Pathophysiology of Nephrolithiasis

Kidney stones are classified according to their chemical composition. Crystallization and subsequent lithogenesis can happen with many solutes in the urine. For crystals to form, urine must be supersaturated with respect to the stone material, meaning that concentrations are higher than the thermodynamic solubility for that substance. Levels of urinary supersaturation correlate with the type of stone formed, and lowering supersaturation is effective for preventing stone recurrence [5, 12]. Calcium oxalate (CaOx) is the predominant component of most stones accounting for more than 80% of stones [1, 13]. The remaining 20% are composed of struvite, cystine, uric acid, and other stones [14]. As mentioned above, the basis for calcium stone formation is supersaturation of the urine with stone-forming calcium salts. Metabolic abnormalities such as hypercalciuria, hypocitraturia, hyperoxaluria, hyperuricosuria, and gouty diathesis can change the composition or saturation of the urine so as to enhance stone formation [5, 14]. In patients who have CaOx stones, for example, urine uric acid excretion may be elevated, often as a result of excessive protein intake. Hyperuricosuria decreases the solubility of CaOx and promotes stone formation by heterologous nucleation on the surface of monosodium urate levels [5, 15]. However, patients who have hyperuricosuric calcium stones differ from patients who have gout and uric acid stones in having a higher urine pH and a higher uric acid level as well [5, 15]. Since it is beyond the scope of the present review to discuss all of these metabolic abnormalities in greater detail, a brief summary is provided in Table 1. Besides Ca or Ox, human urine also contains other ions and macromolecules that can interact with both ions and modulate crystallization [16]. Any cellular dysfunction that can affect various urinary ions and other substances can also influence CaOx supersaturation and crystallization in the kidneys. Crystal formation, particularly of calcium phosphate (CaP) and CaOx, within the urinary tract is widespread. Since humans excrete millions of urinary crystals daily without developing kidney stones, at least a transient development of supersaturation is likely [16]. However, supersaturation is only one step in the process of stone formation. For stone formation crystals need to be retained within the kidney and they should also be located at sites from where crystals can ulcerate to the renal papillary surface to form a stone nidus [17]. Renal injury promotes crystal retention and the development of a stone nidus on the renal papillary surface and further supports crystal nucleation at lower supersaturation [18]. Thus, one approach to prevent stone formation would be to stop crystal retention. Since supersaturation is essential for the production of stones another major therapeutic goal is the reduction of supersaturation [16]. Reactive oxygen species (ROS) seem also to be responsible for cellular injury, therefore a reduction of renal oxidative stress could also be an effective therapeutic approach [19].

In conclusion, the pathogenesis of kidney stone formation is not a simple process and varies largely based on the stone phenotype [15]. Although several theories exist to explain the pathogenesis of renal calculi, the exact cascade of events that lead to kidney stone formation is still unclear.
Current Treatment/Prevention Options

Treatment

The accepted management of stone disease ranges from observation (watchful waiting) to surgical removal of the stone. Various factors such as size of calculi, severity of symptoms, degree of obstruction, kidney function, location of the stone and the presence or absence of associated infection influence the choice of one type of intervention over the other [9].

Stones which are smaller than 5 mm have a high probability of spontaneous passage which can take up to 40 days [8]. During this watchful waiting period, patients can be treated with hydration and pain medication [4]. However, stones larger than 5 mm or stones that fail to pass are treated by interventional procedures [4]. Open surgical procedures for the treatment of ureteric stones have gradually disappeared in the last 30 years and have been replaced by minimal invasive techniques such as ESWL or ureteroscopy.

ESWL is a noninvasive procedure which uses shock waves to fragment calculi [20]. This technique is the most widely used method for managing renal and ureteral stones. However, treatment success rates depend on stone composition, size, properties and location of the stone as well as the instrumentation type and shock frequency [4]. It also needs to be considered that the same forces that are directed at the stones have deleterious effects on surrounding tissues [20]. Damage to almost every abdominal organ system has been reported [21, 22], but by far the most common injury is acute renal hemorrhage although its true incidence is unclear and poorly defined [20]. Most often renal hemorrhage can be managed conservatively; however, in rare instances the complications are fatal [20]. Reports of post-ESWL perirenal hematoma range from less than 1% to greater than 30% [23]. Furthermore, ESWL has been associated with long-term medical effects such as diabetes mellitus and hypertension [24].

In addition to ESWL, other procedures such as ureteroscopy (URS) have been developed for removal of ureteral stones. The new generations of uroscopes are flexible, smaller in diameter, stiffer and more durable, and have an improved tip deflection [4]. The major drawback of URS is that it is more invasive than ESWL and the rate of ureteric perforation and stricture formation remains around 2 to 4% [25]. In contrast, the major advantage of URS is that it is cheaper and results in higher and faster stone-free rates [4, 9]. It remains unclear which treatment modality is better than the other and the final decision should be based on the patient’s preference, on the size and the location of the stone, expertise of the physician and the costs of the procedure [4].

Prevention

Despite the major technical achievements for stone removal in the last three decades the problem of recurrent stone formation remains. As mentioned earlier the recurrence rate of kidney stones is approximately 15% in the first year and as high as 50% within five years of the initial stone [2]. Effective kidney stone prevention is dependent on the stone type and the identification of risk factors for stone formation. An individualized treatment plan incorporating dietary changes, supplements, and medications can be developed to help prevent the formation of new stones. Regardless of the underlying etiology of the stone disease, patients should be instructed to increase their fluid intake in order to maintain a urine output of at least 2 L/d [14]. A high fluid intake reduces urinary saturation of stone-forming calcium salts and dilutes promoters of CaOx crystallization [14]. A high sodium intake increases stone risk by reducing renal tubular calcium reabsorption and increasing urinary calcium. Patients should be advised to limit their dietary sodium intake to 2000–3000 mg/d [14]. A restriction of animal proteins is also encouraged since animal proteins provide an acid load because of the high content of sulfur-containing amino acids. Thus, a high protein intake reduces urine pH and citrate and enhances urinary calcium excretion via bone resorption and reduces renal calcium reabsorption [26]. Stone formers should not be advised to restrict calcium unless it has been shown that they have an excessive intake of calcium [2]. A reduced intake of calcium leads to an increased intestinal absorption of oxalate, which itself may account for an increased risk of stone formation [14]. Vitamin C has been implicated in stone formation because of in vivo conversion of ascorbic acid to oxalate. Therefore, a limitation of vitamin C supplementation to 500 mg/d or less is recommended [14].

When dietary modification is ineffective, pharmacological treatment should be initiated. The most effective hypocalciuric agents are thiazide diuretics which hypocalciuric action enhance calcium reabsorption in the distal renal tubules [27]. However, long-term use in up to 50% of patients is limited because of side effects including fatigue, dizziness, impotence, musculoskeletal symptoms, or gastrointestinal complaints [14]. Another complication is thiazide-induced potassium depletion, which causes intracellular acidosis and can lead to hypokalemia and hypochitraturia [1]. Potassium citrate is effective in the treatment of patients who have calcium stones and normal urinary calcium. By providing an alkali load, potassium citrate increases urinary pH and citrate, therefore mediating the inhibitory effects of macromolecular modulators of calcium oxalate crystallization [28]. The main limitation for a more widespread use of alkali citrate preparations is the relatively low tolerability of available alkali citrate preparations. Adverse effects that reduce treatment compliance have been noted mainly in the gastrointestinal tract and include eructation, bloating, and diarrhea [28]. In conclusion, none of the listed treatment modalities is without any side effects. Thus, the focus should be on the development of novel strategies for the prevention and treatment of kidney stone disease. Herbal medicines could close a gap in this regard.

Currently Used Herbal Medicines

In vitro studies

In vitro systems for experimental nephrolithiasis can be differentiated into systems investigating the physical chemistry of stone formation or systems that explore the pathophysiology of renal stone disease. For the first purpose, in vitro crystallization systems are widely used to study processes of crystal nucleation, growth and agglomeration [29]. For the latter one, cultured renal epithelial cell lines are widely accepted as a tool to explore the mechanism of urolithiasis [30].

From the 13 in vitro studies that met the inclusion criteria for the present review, 7 articles focused on calcium oxalate crystallization in the presence or absence of a particular plant extract, in 3 articles a cell culture system was used to investigate the effects of an extract on oxalate-induced cell injury and a further 3 articles used either a combination of both techniques or included an additional in vivo experiment.

Various herbs have been reported to inhibit CaOx crystallization. Atmani and Khan [31] have reported that an extract from the herb Herniaria hirsuta L., a plant that traditionally is used in Mo-
rocco for the treatment of lithiasis, promoted the nucleation of calcium oxalate crystals, increasing their number but decreasing their size. In a follow-up study the authors could demonstrate that *H. hirsuta* could block crystal binding to cultured renal cells [32]. Similar effects on calcium oxalate crystallization in vitro have been shown for an aqueous extract from *Phyllanthus niruri* L., a plant which is used in traditional Brazilian medicine for the treatment of stone disease [33]. The authors could show that the extract interfered with the CaOx crystallization process by reducing CaOx crystal growth and aggregation [33]. In an earlier study, Campos and Schor [34] investigated the in vitro effect of *P. niruri* on a model of CaOx crystal endocytosis by Madin-Darby canine kidney cells. The extract exhibited a potent and effective non-concentration-dependent inhibitory effect on the CaOx crystal internalization. Garimella et al. [35] demonstrated that an extract prepared from the seeds of *Dolichos biflorus* L. [now *Vigna unguiculata* (L) Walp. subsp. *Unguiculata*] which is used in traditional Indian Ayurvedic medicine could inhibit the precipitation of calcium and phosphate in vitro. Several traditional Chinese medicines (TCM) or plants that are used in Kampou medicine also have demonstrated their abilities to inhibit calcium oxalate crystallization [36,37]. Dietary factors appear to affect the ability of urine to inhibit CaOx crystallization. In this regard, lemon juice has been found to inhibit the rate of crystal nucleation and aggregation [38,39]. Overall, the in vitro crystallization experiments confirmed that prophylaxis of renal stones could be achieved by reducing supersaturation through promotion of small crystal nucleates. As mentioned above, in vitro studies using renal epithelial cell lines are useful to perform mechanistic studies on urolithiasis. In this regard, oxalate, a major constituent of CaOx stones, has been shown to exert cytotoxic effects on renal tubular epithelial cells, attributable to increased oxidative stress within the cells [40]. Oxalate seems to induce cell death mediated by both apoptosis and cellular necrosis, since oxalate exposure leads to the formation of apoptotic bodies as well as induces changes in membrane integrity, the release of cellular enzymes, and membrane-lipid peroxidation [41]. It could be shown recently that an extract prepared from *Quercus salicina* Blume/*Quercus stenophylla* Makino could suppress cell injury induced by oxalate exposure by scavenging free radicals and suppressing the activation of NADPH oxidase [42]. Similar effects were reported for epigallocatechin gallate (EGCG) from green tea which also inhibited free radical production induced by oxalate [43]. In summary, the reported in vitro studies are promising since they have shown an inhibition of oxalate crystallization or antioxidative action. However, the overall limitation of all the listed studies is that the plant extracts have not been further phytochemically characterized. As a consequence, the validity of the studies is limited since without phytochemical characterization, quality control is difficult and reproducibility of results questionable. In addition, only two studies addressed the presence of oxalate in plant extracts [31,43], a fact that needs to be considered for in vitro crystallization experiments in order to exclude false negative effects. Since many extracts contain oxalate (and/or citrate) per se, the quantitative amount of both molecules should be taken into account for future in vitro studies.

In vivo studies

As mentioned in the previous paragraph, in vitro models relate to only one event and one aspect of the process (e.g., crystallization studies determining nucleation and growth). In order to understand all aspects of the pathogenesis, including the anatomic and physiological role of kidneys, animal models are frequently used [44]. Most of the data available on renal physiology are based on experiments in rats, rabbits and dogs, however, rats are the animals most commonly used for the study of nephrolithiasis [44]. Since 80% of all kidney stones are composed of calcium oxalate [14], CaOx nephrolithiasis has been studied in greater detail. Stones formed in kidneys of humans and rats are identical at the ultrastructural level in both the nature and the composition of their matrix [44], thus, rat models of nephrolithiasis are helpful experimental tools for exploring the pathophysiology of this disease. CaOx kidney nephrolithiasis is produced in rats by the induction of acute or chronic hyperoxaluria using a variety of agents such as sodium oxalate, ammonium oxalate, hydroxy-

Butterweck V, Khan SR. Herbal Medicines in... Planta Med 2009; 75: 1095–1103
calculi, probably by hindering the deposition of crystalline material on the stone nidus. The data of both in vivo studies indicate that *P. niruri* probably interferes with the biomineralization process by promoting a different interaction between the crystal and the macromolecules of the organic matrix. The data are also in line with results from in vitro studies in which the plant extract reduced CaOx crystal aggregation and growth rate [33].

As mentioned earlier, allkali citrate increases urinary pH and citrate, therefore inhibiting calcium oxalate crystallization [28]. The fact that any alkali citrate would be adequate to increase urinary pH and citrate provides an interesting approach for further research. Since certain fruit juices have high concentrations of citrate (38.3–67.4 mmol/L) [53], intake of these juices could also be considered for the management of stone disease. It was shown by Grases et al. [54] that an infusion of *Rosa canina* L. increased citrate excretion without changing volume, pH, or urinary concentrations of oxalate or phosphate. Touhami et al. [55] reported that rats treated with ethylene glycol-ammonium chloride (EG–AC) had large deposits of calcium oxalate crystals in all parts of the kidney, and that such deposits were not present in rats treated with ethylene glycol-ammonium chloride (EG–AC) alone.

In summary, although the majority of in vivo studies in rats has proven that certain plant extracts or fruit juices decrease the excretion of urinary calcium and oxalate and show a potential inhibitory effect on the development of urinary calculi, the precise mechanism of action is still unclear. The prospective therapeutic implication is also restricted by the fact that the used plant extracts have not been further phytochemically characterized which to some degree limits the informative value of the data because statements regarding active compounds remain speculative at present.

Clinical trials

From the 21 clinical studies that were identified using the inclusion criteria for this review the majority of articles (n = 9) evaluated the impact of citrus juices (orange juice, lemon juice, grapefruit juice, apple juice or lemonade) on kidney stone formation. Other studies that met the inclusion criteria focused on the effect of cranberry juice (n = 3), *Hibiscus sabdariffa* L. (n = 2), *Phyllanthus niruri* L. (n = 2), *Orthosiphon stamineus* Benth. or syn. *Clorodendranthus spicatus Thunb.*) (n = 1), *Dolichos biflorus* L. (*Vigna unguiculata* (L.) Walp. subsp. *Unguiculata*) (n = 1), *Andrographis paniculata* L. (n = 1), *Sambucus nigra* L. (n = 1), and *Solidago virgaurea* L. (n = 1).

<table>
<thead>
<tr>
<th>Country</th>
<th>Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Sesbania grandiflora (L.) Pers. [84]; Aerva lanate (L.) Juss. Ex. Schultz [85, 86]</td>
</tr>
<tr>
<td></td>
<td>Moringa oleifera Lam. [87]; Asparagus racemosus Willd. [88]</td>
</tr>
<tr>
<td></td>
<td>Rotula aquatica Lour. [89]; Cyclea peltata (Lam.) Hook.f. & Thoms. [90]</td>
</tr>
<tr>
<td></td>
<td>Tribulus terrestris L. [91]; Musa sapienta L. (banana stem) [92]</td>
</tr>
<tr>
<td></td>
<td>Ammania bacchifera L. [93]; Mimosa pudica L. [94]</td>
</tr>
<tr>
<td></td>
<td>Cataeva nurvula Buch-Ham. [95]</td>
</tr>
<tr>
<td>Japan</td>
<td>Alisma orientale (Sam.) Juz. (Takusha) [42]</td>
</tr>
<tr>
<td></td>
<td>Desmodium stylococulium (Osbeck) Merr. [96]; Quercus salicina Blume [97]</td>
</tr>
<tr>
<td>Brasil</td>
<td>Phyllanthus niruri L. [51]; Costus spiralis (Jacq.) Roscoe [98]</td>
</tr>
<tr>
<td>China</td>
<td>Wulingjan [= mixture of Ailima orientale (Sam.) Juz., Polypos umbellatus Pers., Atractylodes macrocephala Koiz., Poria cocos (Schw.) Wolf, Cinnamomum cassia (L.) Presl.] [99]</td>
</tr>
<tr>
<td>Mexico</td>
<td>Randia echinocarpa Sesse & Moc. [101]; Raphanus sativus L. [102]</td>
</tr>
<tr>
<td>Morocco</td>
<td>Trigonella foenum graecum L. [103]; Herniaria hirsuta L. [32]</td>
</tr>
<tr>
<td>Iran</td>
<td>Nigella sativa L. [104]</td>
</tr>
<tr>
<td>Others</td>
<td>Rubia tinctorum L. [105]; Rosa canina L. [54]</td>
</tr>
<tr>
<td></td>
<td>Punica granatum L. (pomegranate juice) [58]</td>
</tr>
<tr>
<td></td>
<td>Citrus limon (L.) Burm. f. (lemon juice) [55]</td>
</tr>
</tbody>
</table>

Table 2 Ethnobotanical distribution of plants for which data from animal experiments exist.
As pointed out previously, citrate is a known inhibitor of calcium-based stones. Its presence in urine decreases the saturation of calcium oxalate and calcium phosphate by forming soluble complexes with calcium. By its conversion through bicarbonate citrate increases urinary pH which induces an additional citraturic response by slowing renal citrate metabolism and impairing citrate reabsorption [28]. However, pharmacological potassium citrate supplementation requires a rigorous schedule of numerous tablets or liquid supplements taken routinely 3 to 4 times a day. Patient compliance significantly decreases when medications are administered more than once daily [59]. Patients therefore could benefit from intake of dietary citrate. Citrus fruits and juices are a known natural source of dietary citrate. Several studies investigated the influence of orange and grapefruit juice on urinary variables and the risk of crystallization [60, 61]. As observed by Wabner and Pak [60], consumption of 1.2 L of orange juice (Citrus aurantium var. sinensis L.) per day caused increases in urine pH and citrate similar to a conventional dose of potassium citrate. In another investigation the impact of orange, grapefruit [Citrus X paradisi Macf. (pro sp.)] or apple juice [Malus pumila Mill. syn: Malus domestica Borkh. (Borkh.)] on urinary composition and crystallization was examined [62]. The authors noticed an increased pH value and increased citrate excretion after consumption of each juice; CaOx crystallization was significantly reduced by grapefruit and apple juice but not by orange juice. Two additional studies investigated the effect of grapefruit juice on urinary excretion of citrate and other urinary risk factors for renal stone formation. Goldfarb and Aspin [63] found that administration of grapefruit juice over a 7-day period to healthy subjects increased mean oxalate and citrate excretion when compared to the control group. However, no net change in the supersaturation of calcium oxalate, calcium phosphate, or uric acid was observed in this study. Trinchieri et al. [64] evaluated changes in urinary risk factors after administration of a soft drink containing grapefruit juice. In this study, urinary flow was significantly increased after both grapefruit juice and mineral water compared to baseline. Compared to mineral water, grapefruit juice significantly increased urinary excretion of citrate, calcium and magnesium. In comparison to orange and grapefruit juice, lemon juice (Citrus limon (L.) Burm. f.) contains the highest concentration of citrate, nearly 5 times that of oranges [65]. So far 4 studies have investigated lemonade therapy as a potential treatment for hypocitraturic nephrolithiasis [65, 66]. The studies concluded that consumption of lemonade significantly increased urinary citrate excretion and therefore could be a useful adjunctive therapy in patients with hypocitraturia. Four ounces of lemon juice provide 5.9 g citric acid [65]. When diluted in 32 oz (960 mL) of water, lemonade could not only promote dietary citrate but also fluids [67].

All of the mentioned studies have shown that citrus fruit juices consumption delivers a high citric acid load resulting in elevated urinary citrate levels. Since these juices are also well tolerated and inexpensive they could be considered as an alternative or at least an adjunctive therapy for hypocitraturic stone formers. The limitation of most studies, however, is that they have been carried out in either healthy subjects (small sample size studies) or with a larger sample size in patients but therefore being retrospective. Thus, further research is needed in stone-forming patients. In addition, the phytochemical composition of the administered juices remains unclear. Furthermore, the influence of single compounds from citrus juices has not been examined until now.

Cranberry (Vaccinium macrocarpon Ait.) juice is another juice that has been investigated in clinical trials for its ability to influence urinary biochemical and physicochemical risk factors associated with CaOx kidney stones. However, the literature regarding the effects of cranberry juice on urinary stone risk factors has yielded conflicting results. Urinary calcium has been found to be increased [68], or unchanged [69, 70]. Similarly, oxalate has been reported to be either increased [68, 70] or decreased [69] and pH values have been shown to be decreased [68, 70] or increased [69]. The reasons for these conflicting results might be due to the variability in the amount (330 mL–1 L per day) of cranberry juice ingested, the source and/or the duration of intake (5 days to 2 weeks). Further, the study population was relatively small (12–24 subjects) and in all trials healthy subjects have been used. In order to clarify the potential role of cranberry juice on urinary stone risk factors, juices should be evaluated in the future in prospective, double-blind, randomized studies in larger numbers to reach a final conclusion. Since compounds in cranberry juice have been shown to inhibit the attachment of bacteria to the epithelial lining of the urinary tract [71], the same compounds could inhibit the attachment of CaOx crystals and stone-promoting bacteria to renal epithelial cells. Thus, plant extracts that exert antibacterial activities could also have antilithogenic properties by protecting epithelial cells. In fact, Muangman et al. [72] could demonstrate that Andrographis paniculata tablets were beneficial in the treatment of post-ESWL urinary tract infection. In this study post-ESWL pyuria and hematuria in patients receiving Andrographis paniculata were significantly reduced when compared to pre-ESWL values. Other plants which should be mentioned in this context are Arctostaphylos ussu-ursi L. or Equisetum arvense L. since they also have known antiseptic activities [73].

As reported formerly, for the prevention of stone formation a high fluid intake is important because a reduced urinary volume will amplify the saturation of all solutes. Recommended fluids include mineral water and fruit juices. Plant extracts which increase urinary volume could therefore also be used as an adjunctive therapy. There are a growing number of studies purporting diuretic effects with traditional medicines. Of these, the most promising are Solidago virgaurea L. [74], Sambucus nigra L. [75] and Hibiscus sabdariffa L. [76, 77]. Prasongwatan et al. [77] also report an increased uric acid excretion and clearance after consumption of H. sabdariffa tea in study subjects with or without a history of renal stones. On the contrary, Kirdpoon et al. [76] found a decrease in uric acid after consumption of a juice prepared from H. sabdariffa. An increase of uric acid excretion was also noted after consumption of a tea prepared from Orthosiphon grandiflorus (new: Orthosiphon stamineus Benth. or syn. Clerodendranthus spicatus Thunb.) [78]. The authors also noticed a stone size reduction in patients which was probably related to an increased excretion of calcium and uric acid. Recently, the authors Yuliana et al. [79] could show in in vitro experiments that the antilithogenic activity of O. grandiflorus might be due to its diuretic activity. The authors demonstrated that methoxyflavonoids from Orthosiphon act as antagonists at adenosine A1 receptors. Some studies revealed that adenosine A1 receptor antagonists can induce diuresis and sodium excretion [80]. Since adenosine A1 receptors are expressed in the afferent arterioles, glomerulus, proximal tubules, and collecting ducts adenosine antagonists could directly inhibit sodium reabsorption in the proximal tubules or indirectly by promoting afferent arteriole dilatation [81].
However, since only a very limited number of clinical studies have been performed with these two plants the overall benefits are not very clear yet and it is recommended that further studies are conducted to clarify the reported effects. As mentioned in the previous paragraph, it has been shown that *Phyllanthus niruri* has an inhibitory effect on CaOx crystal growth and aggregation *in vitro* [33] and prevented the increase in the size and number of formed crystals in a rat model [51, 52]. These results could be confirmed in a clinical trial [82]. The study revealed that if patients took capsules containing a 2% aqueous extract of *P. niruri* (450 mg capsule, 3 × d) for 3 months urinary calcium was significantly reduced in hypercalciuric patients. Furthermore, regular self-administration (2 g per day for 3 months) of a *P. niruri* extract after ESWL for renal stones resulted in an increased stone-free rate [83]. The authors concluded that the lack of side effects supports the use of *P. niruri* to improve overall outcomes after ESWL for lower pole stones. It is worth mentioning in this context that from all studies that were included in the present review a phytochemical profile only exists for *P. niruri* [82].

Conclusion

The effects of various plants with proposed application to prevent and treat stone kidney formation have been critically reviewed in the present article. Data from *in vitro*, *in vivo* and clinical trials reveal that phytotherapeutic agents could be useful as either an alternative or a complementary therapy in the management of urolithiasis. The reviewed studies show that some possible mechanisms of action of plant extracts include an increased excretion of urinary citrate, decreased excretion of urinary calcium and oxalate or could be attributable to diuretic, antioxidant or antibacterial effects. Beyond the promising data on activity and efficacy, data on quality of extracts have to be taken into consideration as well. Unfortunately, the documented phytochemical characterization of all herbal preparations in the reviewed articles is inadequate. Future scientific and clinical studies about the efficacy of herbal extracts would highly benefit from an adequate phytochemical description of the extract. Even though most of the reports fail to rigorously define the specific herbal product used in *in vitro*, *in vivo* or clinical studies, investigators are increasingly aware that significant differences in the outcome are likely to be product-specific. It is further suggested that products used for research clinical studies should be characterized by the extraction solvent, drug-extract ratio and the amount of specific marker compounds. This information should allow a more substantial discussion of the data and would help to better explain discrepancies between the studies. Additionally, more studies are needed which focus on the mechanism of action of the extract and active ingredients. The need of the hour is to develop an effective, safe and standardized herbal preparation for the management of urolithiasis. Systematic research needs to be undertaken, in an attempt to explore botanicals as alternative and/or complementary medicines for the treatment of urolithiasis. In conclusion, more interdisciplinary research between pharmacognosists, pharmacologist and clinical investigators is needed to develop new plant-derived high-quality natural products to treat and prevent the formation of kidney stones.

References

2. Tiselius HG. Epidemiology and medical management of stone disease. BJU Int 2003; 91: 758–767
Atmani F, Schor N, Boim MA. Extract from Herniaria hirsuta inhibits calcu-

Barros ME, Schor N, Boim MA. Effects of an aqueous extract from Phy-
51: 374–379.

Campes AH, Schor N. Phyllanthus niruri inhibits calcium oxalate endo-
cytes by renal tubular cells: its role in urolithiasis. Nephron 1999; 81:
393–397.

Garimella TS, Jolly CI, Narayanan S. In vitro studies on antithrombic activ-
ity of seeds of Dolichos biflorus Linn. and rhizomes of Bergenia ligulata

Chen YC, Ho CY, Chen LD, Hsu SF, Chen WC. Wu-Ling-San formula inhib-
its the crystallization of calcium oxalate in vitro. Am J Chin Med 2007;
35: 533–541.

Koide T, Yamaguchi S, Utsunomiya M, Yoshioka T, Sugiyama K. The inhib-
itory effect of kampou extracts on in vitro calcium oxalate crystalliza-
tion and in vivo stone formation in an animal model. Int J Urol 1995; 2:
81–86.

Oussama A, Touhami M, Mbarik M. In vitro and in vivo study of effect of
lemon juice on urinary lithogenesis. Arch Esp Urol 2005; 58: 1087–
1092.

Kulaksizoglu S, Sefikermir M, Cevic I. In vitro effect of lemon and orange
juices on calcium oxalate crystallization. Int Urol Nephrol 2008; 40:
589–594.

Hackett RL, Shevock PN, Khan SR. Cell injury associated calcium oxalate

Khan SR, Shevock PN, Hackett RL. Membrane-associated crystallization

Moriyama MT, Miyazawa K, Noda K, Oka M, Tanaka M, Suzuki K. Reduc-
tion in oxalate-induced renal tubular epithelial cell injury by an extract
from Quercus salicina Blume/Quercus stenophylla Makino. Urol Res

Jeong BC, Kim BS, Kim JJ, Kim HH. Effects of green tea on urinary stone

Khan SR. Animal models of kidney stone formation: an analysis. World

Yasui T, Fujita K, Sato M, Sugimoto M, Iguchi M, Nomura S, Kohri K. The
effect of takusha, a kampo medicine, on renal stone formation and ox-

Trinchieri A, Lizzano R, Bernardini P, Nicola M, Pozzoni F, Romano AL,
Serragio MP, Conalfarelli S. Effect of acute load of grapefruit juice on uri-
inary excretion of citrate and urinary risk factors for renal stone forma-

Seltzer MA, Low RK, McDonald M, Shami GS, Stoller ML. Dietary manip-
ulation with lemonade to treat hypocitraturic calcium nephrolithiasis.

Kang DE, Sur RL, Halebian GE, Fitzsimons NJ, Borawski KM, Preminger
GM. Long-term lemonade based dietary manipulation in patients with
hypocitraturic nephrolithiasis. J Urol 2007; 177: 1358–1362; discus-
sion 62.

Penniston KL, Steele TH, Nakada SY. Lemonade therapy increases uri-
inary citrate and urine volumes in patients with recurrent calcium ox-

Gettman MT, Ogen K, Brinkley LJ, Adams-Huet B, PK Yue, Parley MS. Ef-
fect of cranberry juice consumption on urinary stone risk factors. J Urol

McHarg T, Rodgers A, Charlton K. Influence of cranberry juice on the uri-
nary risk factors for calcium oxalate kidney stone formation. BJU Int
2003; 92: 765–768.

Kessler T, Jansen B, Hesse A. Effect of blackcurrant-, cranberry- and plum
juice consumption on risk factors associated with kidney stone forma-

Prevel合わせLM, Vorsa N, Der Marderosian A, Foo LY. The effect of
Urophylla crenata fruit on kidney stone formation. J Urol 2007; 176:
1538; discussion 62.

Premgamone A, Sriboonlue P, Disatapornjaroen W, Maskasem S, Sinsu-
charoen GM. The effect of P-fimbriated Uropathogenic Escherichia coli

Minato K, Miyake Y, Fukumoto S, Yamamoto K, Kata Y, Shimomura Y,
Osawa T. Lemon flavonoid, eriocitrin, suppresses exercise-induced ox-
dalate damage in rat liver. Life Sci 2003; 72: 1609–1616.

Yu J, Wang L, Waltzem RL, Miller EG, Pike LM, Patil BS. Antioxidant activ-
ity of citrus limonoids, flavonoids, and coumarins. J Agric Food Chem

Iguchi V, Kehamili E, Ozeki E, Arincu YV, Uhir M, Erturkuner P, Metin G,
Seckin I, Karaca C, Ipakoglu N, Altug T, Cekmen MB, Taci A. Protective
effect of a potent antioxidant, pomegranate juice, in the kidney of rats
with nephrolithiasis induced by ethylene glycol. J Endourol 2008; 22:
2723–2731.

Cramer JA, Mattson RH, Prevey ML, Scheyer RD, Ouellette VL. How often
is medication taken as prescribed? A novel assessment technique. JA-

Wabner CL, Pak CY. Effect of orange juice consumption on urinary stone

Odvinova CV. Comparative value of orange juice versus lemonade in re-

Honow R, Laube N, Schneider A, Kessler T, Hesse A. Influence of grape-
fruit-, orange- and apple-juice consumption on urinary variables and risk

Goldfarb DS, Asplin JR. Effect of grapefruit juice on urinary lithogenesis.

Sethi TD, Saksena A, Banerjee A, Bhattacharyya A, Aiyar P, Bhat B, Roy
and coworkers. A systematic review of the efficacy of P-fimbriated
Escherichia coli in uroepithelial-cell surfaces by proanthocyanidin ex-

Muangman V, Visesinshid V, Ratana-OLarrn K, Bradilos K. The usage of
Andrographis paniculata following extracorporeal shock wave litho-

Grases F, Melero G, Costa-Bauza A, Prieto R, March GC. Urolithiasis and

Melzig MF. Goldenrod – a classical exponent in the urological phyto-

Waltz B, Chrabasik S. Impact of a proprietary concentrate of Sambucus nigra

Kirdpon S, Nakorn SN, Kirdpon W. Changes in urinary chemical compi-
sition in healthy volunteers after consuming rosehip (Hibiscus sabdarif-

Prasongsawat W, Wootitzin S, Srisboonlue P, Kukongviriyapan V. Urico-
suric effect of Roselle (Hibiscus sabdariffa) in normal and renal-stone

Premgamon A, Sribunuea P, Disatapornjaroen W, Miksadem S, Sinsu-
charoen N, Apinives C. A long-term study on the efficacy of a herbal plant,
Orthosiphon stamineus, and sodium potassium citrate in renal calculi

Yullana ND, Khuti A, Link-Struensee AM, Ijzeran RP, Rungrak-Zakaria
F, Choi YH, Verpoorte R. Adenosine A1 receptor binding activity of me-
thoxy flavonoids from Orthosiphon stamineus. Planta Med 2009; 75:
132–136.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
99 Tsai CH, Chen YC, Chen LD, Pan TC, Ho CY, Lai MT, Tsai FJ, Chen WC. A traditional Chinese herbal antilithic formula, Wulingsan, effectively prevents the renal deposition of calcium oxalate crystal in ethylene glycol-fed rats. Urol Res 2008; 36: 17–24
101 Vargas Solis R, Perez Gutierrez RM. Diuretic and urolithiatic activities of the aqueous extract of the fruit of Randia echiocarpa on rats. J Ethnopharmacol 2002; 83: 145–147