Semin Reprod Med 2008; 26(6): 453-460
DOI: 10.1055/s-0028-1096125
© Thieme Medical Publishers

MicroRNAs and Possible Role in Pituitary Adenoma

Maria Chiara Zatelli1 , Ettore C. degli Uberti1
  • 1Section of Endocrinology, Department of Biomedical Sciences and Advanced Therapies, University of Ferrara, Ferrara, Italy
Further Information

Publication History

Publication Date:
24 October 2008 (online)

ABSTRACT

This review reports the current knowledge of microRNA (miRNA) expression in pituitary adenomas, focusing on recent microarray data. Moreover, a discussion is provided concerning the possible role of validated and putative targets of the most dysregulated miRNA in pituitary adenoma pathogenesis.

REFERENCES

  • 1 Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function.  Cell. 2004;  116 281-297
  • 2 Kloosterman W P, Plasterk R H. The diverse functions of microRNAs in animal development and disease.  Dev Cell. 2006;  11 441-450
  • 3 Du T, Zamore P D. microPrimer: the biogenesis and function of microRNA.  Development. 2005;  132 4645-4652
  • 4 Zeng Y. Principles of micro-RNA production and maturation.  Oncogene. 2006;  25 6156-6162
  • 5 He L, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation.  Nat Rev Genet. 2004;  5 522-531
  • 6 Bushati N, Cohen S M. microRNA functions.  Annu Rev Cell Dev Biol. 2007;  23 175-205
  • 7 Vasudevan S, Tong Y, Steitz J A. Switching from repression to activation: microRNAs can up-regulate translation.  Science. 2007;  318 1931-1934
  • 8 Filipowicz W, Bhattacharyya S N, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?.  Nat Rev Genet. 2008;  9 102-114
  • 9 Esau C, Kang X, Peralta E et al.. MicroRNA-143 regulates adipocyte differentiation.  J Biol Chem. 2004;  279 52361-52365
  • 10 Poy M N, Eliasson L, Krutzfeldt J et al.. A pancreatic islet-specific microRNA regulates insulin secretion.  Nature. 2004;  432 226-230
  • 11 Cuellar T L, McManus M T. MicroRNAs and endocrine biology.  J Endocrinol. 2005;  187 327-332
  • 12 Bak M, Silahtaroglu A, Møller M et al.. MicroRNA expression in the adult mouse central nervous system.  RNA. 2008;  14 432-444
  • 13 Farh K K, Grimson A, Jan C et al.. The widespread impact of mammalian microRNAs on mRNA repression and evolution.  Science. 2005;  310 1817-1821
  • 14 Landgraf P, Rusu M, Sheridan R et al.. A mammalian microRNA expression atlas based on small RNA library sequencing.  Cell. 2007;  129 1401-1414
  • 15 Vadstrup S. The adaptation of TSH secretion to autonomy in non-toxic goiter may be based-on active regulation of set-point and sensitivity of central TSH-receptors, perhaps by the microRNA (MIR) gene.  Med Hypotheses. 2006;  67 588-591
  • 16 Bates A S, Farrell W E, Bicknell E J et al.. Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker.  J Clin Endocrinol Metab. 1997;  82 818-824
  • 17 Fan X, Paetau A, Aalto Y et al.. Gain of chromosome 3 and loss of 13q are frequent alterations in pituitary adenomas.  Cancer Genet Cytogenet. 2001;  128 97-103
  • 18 Knuutila S, Aalto Y, Autio K et al.. DNA copy number losses in human neoplasms.  Am J Pathol. 1999;  155 683-694
  • 19 Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict W F, Prager D. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (Rb) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor uppressor gene other than Rb.  Cancer Res. 1995;  55 1613-1616
  • 20 Calin G A, Dumitru C D, Shimizu M et al.. Frequent deletions and down-regulation ofmicro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukaemia.  Proc Natl Acad Sci U S A. 2002;  99 15524-15529
  • 21 Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli M C, degli Uberti E C. miR-15a and miR-16–1 down-regulation in pituitary adenomas.  J Cell Physiol. 2005;  204 280-285
  • 22 Cimmino A, Calin G A, Fabbri M et al.. miR-15 and miR-16 induce apoptosis by targeting BCL2.  Proc Natl Acad Sci U S A. 2005;  103 13944-13949
  • 23 Wang D G, Johnston C F, Atkinson A B, Heaney A P, Mirakhur M, Buchanan K D. Expression of bcl-2 oncoprotein in pituitary tumours: comparison with cmyc.  J Clin Pathol. 1996;  49 795-797
  • 24 Ibba M, Soll D. Aminoacyl-tRNA synthesis.  Annu Rev Biochem. 2000;  69 617-650
  • 25 Quevillon S, Robinson J C, Berthonneau E, Siatecka M, Mirande M. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein–protein interactions and characterization of a core protein.  J Mol Biol. 1999;  285 183-195
  • 26 Shalak V, Kaminska M, Mitnacht-Kraus R, Vandenabeele P, Clauss M, Mirande M. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component.  J Biol Chem. 2001;  276 23769-23776
  • 27 Schwarz M A, Kandel J, Brett J et al.. Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells.  J Exp Med. 1999;  190 341-343
  • 28 Bottoni A, Vignali C, Piccin D et al.. Proteasomes and RARS modulate AIMP1/EMAP II secretion in human cancer cell lines.  J Cell Physiol. 2007;  212 293-297
  • 29 Bottoni A, Zatelli M C, Ferracin M et al.. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas.  J Cell Physiol. 2007;  210 370-377
  • 30 Liu C G, Calin G A, Meloon B et al.. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues.  Proc Natl Acad Sci U S A. 2004;  101 9740-9744
  • 31 Volinia S, Calin G A, Liu C G et al.. A microRNA expression signature of human solid tumors defines cancer gene targets.  Proc Natl Acad Sci U S A. 2006;  103 2257-2261
  • 32 Pagotto U, Arzberger T, Theodoropoulou M et al.. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas.  Cancer Res. 2000;  60 6794-6799
  • 33 Spengler D, Villalba M, Hoffmann A et al.. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain.  EMBO J. 1997;  16 2814-2825
  • 34 Abdollahi A, Bao R, Hamilton T C. LOT1 is a growth suppressor gene down-regulated by the epidermal growth factor receptor ligands and encodes a nuclear zinc-finger protein.  Oncogene. 1999;  18 6477-6487
  • 35 Pagotto U, Arzberger T, Ciani E et al.. Inhibition of Zac1, a new gene differentially expressed in the anterior pituitary, increases cell proliferation.  Endocrinology. 1999;  140 987-996
  • 36 Theodoropoulou M, Zhang J, Laupheimer S et al.. Octreotide, a somatostatin analogue mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression.  Cancer Res. 2006;  66 1576-1582
  • 37 Cheng A M, Byrom M W, Shelton J, Ford L P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis.  Nucleic Acids Res. 2005;  33 1290-1297
  • 38 Iorio M V, Ferracin M, Liu C G et al.. MicroRNA gene expression deregulation in human breast cancer.  Cancer Res. 2005;  65 7065-7070
  • 39 Takamizawa J, Konishi H, Yanagisawa K et al.. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.  Cancer Res. 2004;  64 3753-3756
  • 40 Sempere L F, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.  Genome Biol. 2004;  5 R13
  • 41 Ciafre S A, Galardi S, Mangiola A et al.. Extensive modulation of a set of microRNAs in primary glioblastoma.  Biochem Biophys Res Commun. 2005;  334 1351-1358
  • 42 Seitz H, Youngson N, Lin S P et al.. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene.  Nat Genet. 2003;  34 261-262
  • 43 Youngson N, Kocialkowski S, Peel N, Ferguson-Smith A C. A small family of sushi-class retrotransposon derived genes in mammals and their relation to genomic imprinting.  J Mol Evol. 2005;  61 481-490
  • 44 Georgiades P, Watkins M, Surani M A, Ferguson-Smith A C. Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12.  Development. 2000;  127 4719-4728
  • 45 Reik W, Constancia M, Fowden A et al.. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes.  J Physiol. 2003;  547 35-44
  • 46 Asa S L, Ezzat S. The cytogenesis and pathogenesis of pituitary adenomas.  Endocr Rev. 1998;  19 798-827
  • 47 Cheng A M, Byrom M W, Shelton J, Ford L P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis.  Nucleic Acids Res. 2005;  33 1290-1297
  • 48 Hebert C, Norris K, Scheper M A, Nikitakis N, Sauk J J. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma.  Mol Cancer. 2007;  6 5-16
  • 49 Reeves R, Nissen M S. The A-T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure.  J Biol Chem. 1990;  265 8573-8582
  • 50 Thanos D, Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome.  Cell. 1995;  83 1091-1100
  • 51 Fedele M, Battista S, Manfioletti G, Croce C M, Giancotti V, Fusco A. Role of the high mobility group A proteins in human lipomas.  Carcinogenesis. 2001;  22 1583-1591
  • 52 Fedele M, Battista S, Kenyon L et al.. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas.  Oncogene. 2002;  21 3190-3198
  • 53 Finelli P, Pierantoni G M, Giardino D et al.. The high mobility group A2 gene is amplified and overexpressed in human prolactinomas.  Cancer Res. 2002;  62 2398-2405
  • 54 Fedele M, Pierantoni G M, Visone R, Fusco A. Critical role of the HMGA2 gene in pituitary adenomas.  Cell Cycle. 2006;  5 2045-2048
  • 55 McCabe C J, Boelaert K, Tannahill L A et al.. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors.  J Clin Endocrinol Metab. 2002;  87 4238-4244
  • 56 Niveiro M, Aranda F I, Peiró G, Alenda C, Picó A. Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas.  Hum Pathol. 2005;  36 1090-1095
  • 57 Onofri C, Theodoropoulou M, Losa M et al.. Localization of vascular endoelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours.  J Endocrinol. 2006;  191 249-261
  • 58 Macleod R M, Thorner M O, Scapagnini U. Basic and Clinical Correlates. Padova, Italy; Liviana Press 1995: 641-653
  • 59 Zatelli M C, Piccin D, Vignali C et al.. Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion.  Endocr Relat Cancer. 2007;  14 91-102

Prof. Ettore C degli Uberti

Section of Endocrinology, Department of Biomedical Sciences and Advanced Therapies, University of Ferrara

Via Savonarola 9, 44100 Ferrara, Italy

Email: dut@unife.it

    >