Synlett 2009(8): 1208-1218  
DOI: 10.1055/s-0028-1088126
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Intramolecular Anodic Olefin Coupling Reactions: Using Radical Cation Intermediates to Trigger New Umpolung Reactions

Kevin D. Moeller*
Department of Chemistry, Washington University, St. Louis, MO 63130, USA
Fax: +1(314)9354481; e-Mail: moeller@wustl.edu;
Further Information

Publication History

Received 24 September 2008
Publication Date:
08 April 2009 (online)

Abstract

Anodic electrochemistry is a powerful tool for generating radical cation intermediates and initiating new cyclization reactions. Like most electrochemical reactions, the transformations involve umpolungs. In this review, recent studies examining the intramolecular coupling of radical cations derived from enol ethers, vinyl sulfides, and ketene acetals with carbon, oxygen, and nitrogen trapping groups are discussed to highlight their synthetic potential.

1 Introduction and Background

2 Arteannuins: A Backdrop for Discovery

3 A Detour: Ketene Acetals as Anodic Olefin Coupling Partners

4 Continuing the Detour: Ineleganolide and a Revised Working Model

5 Extending the Model: Nitrogen Trapping Groups

6 Back to Arteannuins: Completing the Ring Skeleton

7 Lactone Targets and a Couple of Final Points

8 Conclusions

    References

  • 1 For an extensive summary, see: Organic Electrochemistry: Fourth Edition, Revised and Expanded   Lund H. Hammerich O. Marcel Dekker; New York: 2001. 
  • For recent reviews on the use of electrochemistry in synthesis, see:
  • 2a Sperry JB. Wright DL. Chem. Soc. Rev.  2006,  35:  605 
  • 2b Yoshida J. Kataoka K. Horcajada R. Nagaki A. Chem. Rev.  2008,  108:  2265 
  • 3 For an alternative non-oxidative approach to alkene radical cations, see: Crich D. Brebion F. Suk DH. Top. Curr. Chem.  2006,  263:  1 
  • 4a Moeller KD. Tetrahedron  2000,  56:  9527 
  • 4b Moeller KD. Top. Curr. Chem.  1997,  185:  49 
  • 5 Frey DA. Reddy SHK. Wu N. Moeller KD. J. Org. Chem.  1999,  64:  2805e 
  • 6 Hudson CM. Moeller KD. J. Am. Chem. Soc.  1994,  116:  3347 
  • For discussions on the double layer, see:
  • 7a Yoshida K. In Electrooxidation in Organic Chemistry: The Role of Cation Radicals as Synthetic Intermediates   John Wiley and Sons; New York: 1984.  p.13 
  • 7b Fry AJ. In Synthetic Organic Chemistry   2nd ed.:  John Wiley and Sons; New York: 1989.  p.37 
  • 8a Liu B. Duan S. Sutterer AC. Moeller KD. J. Am. Chem. Soc.  2002,  124:  10101 
  • 8b Duan S. Moeller KD. J. Am. Chem. Soc.  2002,  124:  9368 
  • 8c Duan S. Moeller KD. Org. Lett.  2001,  3:  2685 
  • 8d Sutterer A. Moeller KD. J. Am. Chem. Soc.  2000,  122:  5636 
  • 9a Mihelcic J. Moeller KD. J. Am. Chem. Soc.  2003,  125:  36 
  • 9b Mihelcic J. Moeller KD. J. Am. Chem. Soc.  2004,  126:  9106 
  • 10 Wright DL. Whitehead CR. Sessions EH. Ghiviriga I. Frey DA. Org. Lett.  1999,  1:  1535 
  • 11a Hughes CC. Miller AK. Trauner D. Org. Lett.  2005,  7:  3425 
  • 11b Miller AK. Hughes CC. Kennedy-Smith JJ. Gradl SN. Trauner D. J. Am. Chem. Soc.  2006,  128:  17057 
  • For references specifically dealing with oxidative enol ether-furan coupling reactions, see:
  • 12a Moeller KD. New DG. Tetrahedron Lett.  1994,  35:  2857 
  • 12b Moeller KD. Tesfai Z. Denki Kagaku (J. Electrochem. Soc. Jpn.)  1994,  62:  1115 
  • 12c New DG. Tesfai Z. Moeller KD.
    J. Org. Chem.  1996,  61:  1578 
  • 12d Whitehead CR. Sessions EH. Ghiviriga I. Wright DL. Org. Lett.  2002,  4:  3763 
  • 12e Sperry JB. Whitehead CR. Ghiviriga I. Walczak RM. Wright DL. J. Org. Chem.  2004,  69:  3726 
  • 12f Sperry JB. Constanzo JR. Jasinski J. Butcher RJ. Wright DL. Tetrahedron Lett.  2005,  46:  2789 
  • 12g Sperry JB. Wright DL. Tetrahedron  2006,  62:  6551 
  • 13 Sperry JB. Wright DL. J. Am. Chem. Soc.  2005,  127:  8034 
  • 14 Sperry JB. Ghiviriga I. Wright DL. Chem. Commun.  2006,  194 
  • For initial characterization studies, see:
  • 15a Sy L.-K. Brown GD. Haynes R. Tetrahedron  1998,  54:  4345 
  • For more recent structural and synthetic studies, see:
  • 15b Sy L.-K. Cheung K.-K. Zhu N.-Y. Brown GD. Tetrahedron  2001,  57:  8481 
  • 15c Sy L.-K. Zhu N.-Y. Brown GD. Tetrahedron  2001,  57:  8495 
  • For previous synthetic approaches to arteanniuns and related molecules, see:
  • 16a Bariault L. Deon DH. Org. Lett.  2001,  3:  1925 
  • 16b Sy L.-K. Ngo K.-S. Brown GD. Tetrahedron  1999,  55:  15127 
  • 16c Nowak DM. Lansbury PT. Tetrahedron  1998,  54:  319 
  • 16d Schwaebe M. Little RD. J. Org. Chem.  1996,  61:  3240 
  • 16e Jefford CW. Velarde J. Bernardinelli G. Tetrahedron Lett.  1989,  30:  4485 
  • 16f Zhou WS. Zhang L. Fan ZC. Xu XX. Tetrahedron  1986,  42:  4437 
  • 16g Lansbury PT. Mojica CA. Tetrahedron Lett.  1986,  27:  3967 
  • 16h Xu X. Zhu J. Huang D. Xhou W. Tetrahedron  1986,  42:  819 
  • 17 Horner J. Taxil E. Newcomb M. J. Am. Chem. Soc.  2002,  124:  5402 
  • 18 Wu H. Moeller KD. Org. Lett.  2007,  9:  4599 
  • 19a Sun Y. Liu B. Kao J. d’Avignon DA. Moeller KD. Org. Lett.  2001,  3:  1729 
  • 19b Sun Y. Moeller KD. Tetrahedron Lett.  2002,  43:  7159 
  • 19c Reddy SHK. Chiba K. Sun Y. Moeller KD. Tetrahedron  2001,  57:  5183 
  • 20a Hudson CM. Marzabadi MR. Moeller KD. New DG. J. Am. Chem. Soc.  1991,  113:  7372 
  • 20b Tinao-Wooldridge LV. Moeller KD. Hudson CM. J. Org. Chem.  1994,  59:  2381 
  • 21 Ager DJ. Prakash I. Schaad DR. Aldrichimica Acta  1997,  30:  3 
  • 22a Huang Y. Moeller KD. Org. Lett.  2004,  6:  4199 
  • 22b Huang Y. Moeller KD. Tetrahedron  2006,  62:  6536 
  • 24a

    In this case, the potential was measured for a ketene acetal derived from undecanoic acid. For the oxidation potential of an enol ether, see:

  • 24b Moeller KD. Tinao LV. J. Am. Chem. Soc.  1992,  114:  1033 
  • 26 Duh C.-Y. Wang S.-K. Chia M.-C. Chiang MY. Tetrahedron Lett.  1999,  40:  6033 
  • 27 Tang F. Moeller KD. J. Am. Chem. Soc.  2007,  129:  12414 
  • 28 Moeller KD. Wang PW. Tarazi S. Marzabadi MR. Wong PL. J. Org. Chem.  1991,  56:  1058 
  • 29a Xu H.-C. Brandt JD. Moeller KD. Tetrahedron Lett.  2008,  49:  3868 
  • 29b Brandt JD. Moeller KD. Heterocycles  2006,  67:  621 
  • 29c Brandt JD. Moeller KD. Org. Lett.  2005,  7:  3553 
  • 30 Xu H.-C. Moeller KD. J. Am. Chem. Soc.  2008,  130:  13542 
  • 32 Frey DA. Wu N. Moeller KD. Tetrahedron Lett.  1996,  37:  8317 
23

Potentials were measured using Pt working and auxiliary electrodes, an Ag/AgCl reference electrode, an electrolyte solution of 0.1 M LiClO4 in MeCN, a sweep rate of 25 mV/s, and a substrate concentration of 0.025 M. The reference electrode was calibrated using ferrocene as a standard.

25

For previous examples and a brief discussion, see refs. 24 and 19c.

31

For a prior example, see ref. 20a.